module Sterm:`Extset.S`

`with module M = Mterm`

module M:`Extmap.S`

The module of association tables over `elt`

.

type`elt =`

`M.key`

The type of set elements.

type`t =`

`unit M.t`

The type of sets of type `elt`

.

`val empty : ``t`

The empty set.

`val is_empty : ``t -> bool`

Test whether a set is empty or not.

`val mem : ``elt -> t -> bool`

`mem x s`

returns `true`

if `s`

contains `x`

,
and `false`

otherwise.

`val add : ``elt -> t -> t`

`add x s`

returns a set containing the same elements as
`s`

, plus `x`

.

`val singleton : ``elt -> t`

`singleton x`

returns the one-element set that contains `x`

.

`val remove : ``elt -> t -> t`

`remove x s`

returns a set containing the same elements as `s`

,
except for `x`

.

`val merge : ``(elt -> bool -> bool -> bool) ->`

t -> t -> t

`merge f s1 s2`

computes a set whose elts is a subset of elts
of `s1`

and of `s2`

. The presence of each such element is
determined with the function `f`

.

`val compare : ``t -> t -> int`

Total ordering between sets.

`val equal : ``t -> t -> bool`

`equal s1 s2`

tests whether the sets `s1`

and `s2`

are equal.

`val subset : ``t -> t -> bool`

`subset s1 s2`

tests whether the set `s1`

is a subset of `s2`

.

`val disjoint : ``t -> t -> bool`

`disjoint s1 s2`

tests whether the sets `s1`

and `s2`

are disjoint.

`val iter : ``(elt -> unit) -> t -> unit`

`iter f s`

applies `f`

to all elements of `s`

.
The elements are passed to `f`

in increasing order with respect
to the ordering over the type of the elts.

`val fold : ``(elt -> 'a -> 'a) -> t -> 'a -> 'a`

`fold f s a`

computes `(f eN ... (f e1 a)...)`

,
where `e1 ... eN`

are the element of `s`

in increasing order.

`val for_all : ``(elt -> bool) -> t -> bool`

`for_all p s`

checks if all the elements of `s`

satisfy
the predicate `p`

.

`val exists : ``(elt -> bool) -> t -> bool`

`exists p s`

checks if at least one element of `s`

satisfies
the predicate `p`

.

`val filter : ``(elt -> bool) -> t -> t`

`filter p s`

returns the set with all the elements of `s`

that satisfy predicate `p`

.

`val partition : ``(elt -> bool) -> t -> t * t`

`partition p s`

returns a pair of sets `(s1, s2)`

, where
`s1`

contains all the elements of `s`

that satisfy the
predicate `p`

, and `s2`

is the map with all the elements
of `s`

that do not satisfy `p`

.

`val cardinal : ``t -> int`

Return the number of elements in a set.

`val elements : ``t -> elt list`

Return the list of all elements of the given set. The returned list is sorted in increasing order.

`val min_elt : ``t -> elt`

Return the smallest element of the given set or raise
`Not_found`

if the set is empty.

`val max_elt : ``t -> elt`

Return the largest element of the given set or raise
`Not_found`

if the set is empty.

`val choose : ``t -> elt`

Return one element of the given set, or raise `Not_found`

if
the set is empty. Which element is chosen is unspecified,
but equal elements will be chosen for equal sets.

`val split : ``elt -> t -> t * bool * t`

`split x s`

returns a triple `(l, mem, r)`

, where
`l`

is the set with all the elements of `s`

that are
strictly less than `x`

;
`r`

is the set with all the elements of `s`

that are
strictly greater than `x`

;
`mem`

is `true`

if `x`

belongs to `s`

and `false`

otherwise.

`val change : ``(bool -> bool) -> elt -> t -> t`

`change f x s`

returns a set containing the same elements as
`s`

, except `x`

which is added to `s`

if `f (mem x s)`

returns
`true`

and removed otherwise.

`val union : ``t -> t -> t`

`union f s1 s2`

computes the union of two sets

`val inter : ``t -> t -> t`

`inter f s1 s2`

computes the intersection of two sets

`val diff : ``t -> t -> t`

`diff f s1 s2`

computes the difference of two sets

`val fold_left : ``('b -> elt -> 'b) -> 'b -> t -> 'b`

same as `Extset.S.fold`

but in the order of `List.fold_left`

`val fold2_inter : ``(elt -> 'a -> 'a) -> t -> t -> 'a -> 'a`

`fold2_inter f s1 s2 a`

computes `(f eN ... (f e1 a) ...)`

,
where `e1 ... eN`

are the elements of `inter s1 s2`

in increasing order.

`val fold2_union : ``(elt -> 'a -> 'a) -> t -> t -> 'a -> 'a`

`fold2_union f s1 s2 a`

computes `(f eN ... (f e1 a) ...)`

,
where `e1 ... eN`

are the elements of `union s1 s2`

in increasing order.

`val translate : ``(elt -> elt) -> t -> t`

`translate f s`

translates the elements in the set `s`

by the
function `f`

. `f`

must be strictly monotone on the elements of `s`

.
Otherwise it raises `Invalid_arg`

.

`val add_new : ``exn -> elt -> t -> t`

`add_new e x s`

adds `x`

to `s`

if `s`

does not contain `x`

,
and raises `e`

otherwise.

`val is_num_elt : ``int -> t -> bool`

check if the map has the given number of elements

`val of_list : ``elt list -> t`

construct a set from a list of elements

`val contains : ``t -> elt -> bool`

`contains s x`

is the same as `mem x s`

.

`val add_left : ``t -> elt -> t`

`add_left s x`

is the same as `add x s`

.

`val remove_left : ``t -> elt -> t`

`remove_left s x`

is the same as `remove x s`

.

`val print : ``(Stdlib.Format.formatter -> elt -> unit) ->`

Stdlib.Format.formatter -> t -> unit