An Introduction to Deductive Program Verification

Jean-Christophe Filliâtre
CNRS

Sixth Summer School on Formal Techniques
May 2016

http://why3.lri.fr/ssft-16/
Software is hard. – Don Knuth

why?

• wrong interpretation of specifications
• coding in a hurry
• incompatible changes
• software = complex artifact
• etc.
a famous example: binary search

first publication in 1946
first publication without bug in 1962

Writing correct programs

the challenge of binary search

and yet...
and yet

in 2006, a bug was found in Java standard library’s binary search

Joshua Bloch, Google Research Blog
“Nearly All Binary Searches and Mergesorts are Broken”

it had been there for 9 years
the bug

...
```java
int mid = (low + high) / 2;
int midVal = a[mid];
...
```

may exceed the capacity of type `int`
then provokes an access out of array bounds

a possible fix

```java
int mid = low + (high - low) / 2;
```
better programming languages

- better **syntax**
 (e.g. avoid considering DO 17 I = 1. 10 as an assignment)

- more **typing**
 (e.g. avoid confusion between meters and yards)

- more **warnings** from the compiler
 (e.g. do not forget some cases)

- etc.
systematic and rigorous test is another, complementary answer

but test is

• costly
• sometimes difficult to perform
• and incomplete (except in some rare cases)
formal methods propose a mathematical approach to software correctness
what is a program?

there are several aspects

- what we compute
- how we compute it
- why it is correct to compute it this way
what is a program?

the code is only one aspect ("how") and nothing else

"what" and "why" are not part of the code

there are informal requirements, comments, web pages, drawings, research articles, etc.
• how: 2 lines of C

```c
a[52514], b, c = 52514, d, e, f = 1e4, g, h; main(){
  for(; b = c -= 14; h = printf("%04d", e + d / f))
    for(e = d = f; g = --b * 2; d /= g)
      d = d * b + f * (h ? a[b]: f / 5), a[b] = d %--g;
}
```
• **how:** 2 lines of C

```c
a[52514], b, c=52514, d, e, f=1e4, g, h; main(){
  for(; b=c-=14; h=printf("%04d", e+d/f))
    for(e=d%=f; g=--b*2; d/=g)
      d=d*b+f*(h?a[b]:f/5), a[b]=d%--g;}
```

• **what:** 15,000 decimals of π

• **why:** lot of maths, including

$$
\pi = \sum_{i=0}^{\infty} \frac{(i!)^2 \cdot 2^{i+1}}{(2i + 1)!}
$$
formal methods propose a rigorous approach to programming, where we manipulate

- a specification written in some mathematical language
- a proof that the program satisfies this specification
what do we intend to prove?

- **safety**: the program does not crash
 - no illegal access to memory
 - no illegal operation, such as division by zero
 - termination

- **functional correctness**
 - the program does what it is supposed to do
several approaches

model checking, abstract interpretation, etc.

this lecture: deductive verification
Tony Hoare.

checking a large routine (Turing, 1949)

\[r' = 1 \]
\[u' = 1 \]
\[v' = u \]
\[\text{TEST } r - n \]
\[s' = 1 \]
\[u' = u + v \]
\[s' = s + 1 \]
\[r' = r + 1 \]
\[\text{TEST } s - r \]

STOP
Checking a large routine (Turing, 1949)

\[
\begin{align*}
 & r' = 1 \\
 & u' = 1 \\
 & v' = u \\
 & \text{TEST } r - n \\
 & s' = 1 \\
 & u' = u + v \\
 & s' = s + 1 \\
 & r' = r + 1 \\
 & \text{TEST } s - r \\
 & \text{STOP}
\end{align*}
\]

\[
\begin{align*}
u & \leftarrow 1 \\
& \text{for } r = 0 \text{ to } n - 1 \text{ do} \\
& \quad v \leftarrow u \\
& \quad \text{for } s = 1 \text{ to } r \text{ do} \\
& \quad \quad u \leftarrow u + v
\end{align*}
\]
precondition \{ n \geq 0 \}

\begin{align*}
u & \leftarrow 1 \\
for r = 0 \text{ to } n - 1 \text{ do} \\
\quad v & \leftarrow u \\
\quad \text{for } s = 1 \text{ to } r \text{ do} \\
\quad\quad u & \leftarrow u + v
\end{align*}

postcondition \{ u = \text{fact}(n) \}
Checking a large routine (Turing, 1949)

precondition \(\{ n \geq 0 \} \)

\[u \leftarrow 1 \]

\[\text{for } r = 0 \text{ to } n - 1 \text{ do } \quad \text{invariant } \{ u = \text{fact}(r) \} \]

\[v \leftarrow u \]

\[\text{for } s = 1 \text{ to } r \text{ do } \quad \text{invariant } \{ u = s \times \text{fact}(r) \} \]

\[u \leftarrow u + v \]

postcondition \(\{ u = \text{fact}(n) \} \)
function fact(int) : int
axiom fact0: fact(0) = 1
axiom factn: \(\forall n:int. n \geq 1 \rightarrow fact(n) = n \times fact(n-1) \)

goal vc: \(\forall n:int. n \geq 0 \rightarrow \)
\((0 > n - 1 \rightarrow 1 = fact(n)) \land \)
\((0 \leq n - 1 \rightarrow \)
\(1 = fact(0) \land \)
\((\forall u:int. \)
\((\forall r:int. 0 \leq r \land r \leq n - 1 \rightarrow u = fact(r) \rightarrow \)
\((1 > r \rightarrow u = fact(r + 1)) \land \)
\((1 \leq r \rightarrow \)
\(u = 1 \times fact(r) \land \)
\((\forall u1:int. \)
\((\forall s:int. 1 \leq s \land s \leq r \rightarrow u1 = s \times fact(r) \rightarrow \)
\((\forall u2:int. \)
\(u2 = u1 + u \rightarrow u2 = (s + 1) \times fact(r)) \land \)
\((u1 = (r + 1) \times fact(r) \rightarrow u1 = fact(r + 1))) \land \)
\((u = fact((n - 1) + 1) \rightarrow u = fact(n))) \)
function fact(int) : int
axiom fact0: fact(0) = 1

goal vc: ∀ n:int. n ≥ 0 →
(0 > n - 1 → 1 = fact(n)) ∧
what do we do with this mathematical statement?

we could perform a manual proof (as Turing and Hoare did) but it is long, tedious, and error-prone

so we turn to tools that mechanize mathematical reasoning
automated theorem proving

mathematical statement → automated prover → true/false
it is not possible to implement such a program
(Turing/Church, 1936, from Gödel)

full employment theorem for mathematicians

Kurt Gödel
automated theorem proving

mathematical statement → automated prover → true, false, I don’t know, loops forever

elements: Z3, CVC4, Alt-Ergo, Vampire, SPASS, etc.
if we only intend to check a proof, this is decidable

examples: Coq, Isabelle, PVS, HOL Light, etc.
a tool for this lecture
there are many deductive verification tools (see the lecture web page)

in this lecture, we use Why3

but the concepts are broader (similar to programming languages / learning programming)
Why3 is joint work with
François Bobot, Martin Clochard, Léon Gondelman, Claude
Marché, Guillaume Melquiond, Andrei Paskevich, Mário Pereira
logic of Why3 = \textbf{polymorphic first-order logic}, with

- (mutually) recursive algebraic data types
- (mutually) recursive function/predicate symboles
- (mutually) (co)inductive predicates
- let-in, match-with, if-then-else

formal definition in
One Logic To Use Them All (CADE 2013)
• **types**
 - abstract: `type t`
 - alias: `type t = list int`
 - algebraic: `type list α = Nil | Cons α (list α)`

• **function / predicate**
 - uninterpreted: `function f int : int`
 - defined: `predicate non_empty (l: list α) = l ≠ Nil`

• **inductive predicate**
 - `inductive trans t t = ...`

• **axiom / lemma / goal**
 - `goal G: ∀ x: int. x ≥ 0 → x*x ≥ 0`
logic declarations organized in theories

a theory T_1 can be

- used (use) in a theory T_2

- cloned (clone) in another theory T_2
logic declarations organized in theories

a theory T_1 can be

- used (use) in a theory T_2
 - symbols of T_1 are shared
 - axioms of T_1 remain axioms
 - lemmas of T_1 become axioms
 - goals of T_1 are ignored

- cloned (clone) in another theory T_2
logic declarations organized in theories

a theory T_1 can be

- used \texttt{use} in a theory T_2

- cloned \texttt{clone} in another theory T_2
 - declarations of T_1 are copied or substituted
 - axioms of T_1 remain axioms or become lemmas/goals
 - lemmas of T_1 become axioms
 - goals of T_1 are ignored
there are many theorem provers

- SMT solvers: Alt-Ergo, Z3, CVC3, Yices, etc.
- TPTP provers: Vampire, Eprover, SPASS, etc.
- proof assistants: Coq, PVS, Isabelle, etc.
- dedicated provers, e.g. Gappa

we want to use all of them if possible
a technology to talk to provers

central concept: task
 • a context (a list of declarations)
 • a goal (a formula)
Alt-Ergo

Z3

Vampire
workflow
Alt-Ergo

Z3

Vampire
• eliminate algebraic data types and match-with
• eliminate inductive predicates
• eliminate if-then-else, let-in
• encode polymorphism, encode types
• etc.

efficient: results of transformations are memoized
a task journey is driven by a file

- transformations to apply
- prover’s input format
 - syntax
 - predefined symbols / axioms
- prover’s diagnostic messages

more details:
Expressing Polymorphic Types in a Many-Sorted Language (FroCos 2011)
Why3: Shepherd your herd of provers (Boogie 2011)
example: Z3 driver (excerpt)

```plaintext
printer "smtv2"
valid "~unsat"
invalid "~sat"

transformation "inline_trivial"
transformation "eliminate_builtin"
transformation "eliminate_definition"
transformation "eliminate_inductive"
transformation "eliminate_algebraic"
transformation "simplify_formula"
transformation "discriminate"
transformation "encoding_smt"

prelude "(set-logic AUFNIRA)"

theory BuiltIn
  syntax type int "Int"
  syntax type real "Real"
  syntax predicate (=) "(= %1 %2)"

  meta "encoding : kept" type int
end
```
program verification
a programming language, WhyML

- ML-like syntax
- polymorphism
- pattern-matching
- exceptions
- mutable data structures

\[\begin{align*}
 r' &= 1 \\
 u' &= 1 \\
 v' &= u \\
 \text{TEST } r - n \\
 s' &= 1 \\
 u' &= u + v \\
 s' &= s + 1 \\
 r' &= r + 1 \\
 \text{TEST } s - r \\
\end{align*}\]

\[u \leftarrow 1\]
for \(r = 0 \) to \(n - 1 \) do
 \[v \leftarrow u\]
 for \(s = 1 \) to \(r \) do
 \[u \leftarrow u + v\]

\text{demo (access code)}
computing verification conditions

\[VC(\text{let } f \ x \ \text{requires } \{ P \} \ \text{ensures } \{ Q \} = e) = \forall x. P \Rightarrow WP(e, Q) \]

where \(WP(e, Q) \) is the \textit{weakest precondition} for program \(e \) to satisfy postcondition \(Q \)
weakest preconditions

\[
WP(t, Q) = Q[result \leftarrow t]
\]

\[
WP(x := t, Q) = Q[x \leftarrow t]
\]

\[
WP(e_1; e_2, Q) = WP(e_1, WP(e_2, Q))
\]

\[
WP(\text{if } b \text{ then } e_1 \text{ else } e_2, Q) =
\begin{cases}
WP(e_1, Q) & \text{if } b \\
WP(e_2, Q) & \text{else}
\end{cases}
\]

\[
WP(\text{while } b \text{ do invariant } \{ I \} \text{ e done}, Q) =
I \land \forall x_1, \ldots, x_n. I \Rightarrow
\begin{cases}
WP(e, I) & \text{if } b \\
Q & \text{else}
\end{cases}
\]
• instead of substituting, introduce new variables

\[x := !x + 1; \quad \forall x_1. x_1 = x_0 + 1 \Rightarrow \]
\[x := !x \times !y; \quad \forall x_2. x_2 = x_1 \times y \Rightarrow \]

... ...

• many other constructs: function application, pattern-matching, for loop, etc.

• exceptional postconditions
computing WPs this way can lead to exponential explosion
e.g.

```plaintext
if b1 then ... else ...;
if b2 then ... else ...;
if b3 then ... else ...;
... 
```

there are better ways to compute WPs, that are linear in practice
(FLanagan and Saxe, POPL 2001)
termination
Why3 requires all functions in the logic to be terminating

this is one way to ensure consistency

\[
\text{function } f (x: \text{int}) : \text{int} = 1 + f(x)
\]

that would introduce an inconsistency

what about programs?
you can prove either

partial correctness
 if the precondition holds
 and if the program terminates
 then its postcondition holds

or

total correctness
 if the precondition holds
 then the program terminates
 and its postcondition holds
another historical example

\[f(n) = \begin{cases}
 n - 10 & \text{si } n > 100, \\
 f(f(n + 11)) & \text{sinon.}
\end{cases} \]

demo (access code)
another historical example

\[f(n) = \begin{cases}
 n - 10 & \text{si } n > 100, \\
 f(f(n + 11)) & \text{sinon.}
\end{cases} \]

demo (access code)

e ← 1
while e > 0 do
 if n > 100 then
 n ← n - 10
 e ← e - 1
 else
 n ← n + 11
 e ← e + 1
 return n

demo (access code)
termination of a loop / recursive function is ensured by a variant

\[
\text{variant } \{t_1, \ldots, t_n\}
\]

- lexicographic order
- the order relation for \(t_i \)
 - is \(y \prec x \) \(\overset{\text{def}}{=} y < x \land 0 \leq x \) if \(t_i \) has type \(\text{int} \)
 - is immediate sub-term if \(t_i \) has some algebraic type
 - is user-given otherwise (e.g. \(\text{variant } \{t \text{ with } r\} \))
as shown with function 91, proving termination may require to establish functional properties as well

another example:

- Floyd’s cycle detection (tortoise and hare algorithm)
partial correctness is a rather weak property, since non-termination can turn your whole proof into something meaningless (we’ll see an example later)

non-termination is an effect

Why3 tracks it and warns you about it (unless an explicit \texttt{diverges} is given)
• Euclidean division (ex1_eucl_div.mlw)
• factorial (ex2_fact.mlw)
• Egyptian multiplication (ex3_multiplication.mlw)
arrays
only one kind of mutable data structure:

records with mutable fields

for instance, references are defined this way

\[
\text{type ref } \alpha = \{ \text{mutable contents : } \alpha \}
\]

and ref, !, and := are regular functions
the library introduces arrays as follows:

```haskell
type array α model {
    length: int;
    mutable elts: map int α
}
```

where

- `map` is the logical type of purely applicative maps
- keyword `model` means type `array α` is an abstract data type in programs
we cannot define operations over type array α (it is abstract) but we can declare them

examples:

```haskell
val ([])(a: array $\alpha$) (i: int) : $\alpha$
  requires { 0 $\leq$ i < length a }
  ensures { result = Map.get a.elts i }

val ([]$\leftarrow$)(a: array $\alpha$) (i: int) (v: $\alpha$) : unit
  requires { 0 $\leq$ i < length a }
  writes { a.elts }
  ensures { a.elts = Map.set (old a.elts) i v }
```

and other operations such as create, append, sub, copy, etc.
when we write \(a[i] \) in the logic

- it is mere syntax for \(\text{Map.get } a.\text{elts } i \)

- we do not prove that \(i \) is within array bounds
 (\(a.\text{elts} \) is a map over all integers)
given a multiset of N votes

A A A C C B B C C C B C C C

determine the majority, if any
an elegant solution

due to Boyer & Moore (1980)

linear time

uses only three variables
cand = A
k = 1
cand = A
k = 2
cand = A
k = 3
cand = A
k = 2
\(\text{cand} = A \)
\(k = 1 \)
cand = A
k = 0
cand = B
k = 1
cand = B
k = 0
cand = C
k = 1
cand = C
k = 2
cand = C
k = 1
cand = C
k = 2
cand = C
k = 3
cand = C
k = 3

then we check if C indeed has majority, with a second pass
(in that case, it has: 7 > 13/2)
SUBROUTINE MJRTY(A, N, BOOLE, CAND)
INTEGER N
INTEGER A
LOGICAL BOOLE
INTEGER CAND
INTEGER I
INTEGER K
DIMENSION A(N)
K = 0
C THE FOLLOWING DO IMPLEMENTS THE PAIRING PHASE. CAND IS
C THE CURRENTLY LEADING CANDIDATE AND K IS THE NUMBER OF
C UNPAIRED VOTES FOR CAND.
DO 100 I = 1, N
IF ((K .EQ. 0)) GOTO 50
IF ((CAND .EQ. A(I))) GOTO 75
K = (K - 1)
GOTO 100
50 CAND = A(I)
K = 1
GOTO 100
75 K = (K + 1)
100 CONTINUE
IF ((K .EQ. 0)) GOTO 300
BOOLE = .TRUE.
IF ((K .GT. (N / 2))) RETURN
C WE NOW ENTER THE COUNTING PHASE. BOOLE IS SET TO TRUE
C IN ANTICIPATION OF FINDING CAND IN THE MAJORITY. K IS
C USED AS THE RUNNING TALLY FOR CAND. WE EXIT AS SOON
C AS K EXCEEDS N/2.
K = 0
DO 200 I = 1, N
IF ((CAND .NE. A(I))) GOTO 200
K = (K + 1)
IF ((K .GT. (N / 2))) RETURN
200 CONTINUE
300 BOOLE = .FALSE.
RETURN
END
let mjrty (a: array candidate) =
 let n = length a in
 let cand = ref a[0] in let k = ref 0 in
 for i = 0 to n-1 do
 if !k = 0 then begin cand := a[i]; k := 1 end
 else if !cand = a[i] then incr k else decr k
 done;
 if !k = 0 then raise Not_found;
try
 if 2 * !k > n then raise Found; k := 0;
 for i = 0 to n-1 do
 if a[i] = !cand then begin
 incr k; if 2 * !k > n then raise Found
 end
 done;
 raise Not_found
with Found →
 !cand
end
precondition

let mjrty (a: array candidate)
requires { 1 ≤ length a }

postcondition in case of success

ensures { 2 * numeq a result 0 (length a) > length a }

postcondition in case of failure

raises { Not_found →
 ∀ c: candidate.
 2 * numeq a c 0 (length a) ≤ length a }
first loop

for i = 0 to n-1 do
 invariant \{ 0 \leq !k \leq \text{numeq } a \hspace{1pt} !\text{cand } 0 \hspace{1pt} i \}\}
 invariant \{ 2 \times (\text{numeq } a \hspace{1pt} !\text{cand } 0 \hspace{1pt} i \hspace{1pt} - \hspace{1pt} !k) \leq i - !k \}\}
 invariant \{ \forall c: \text{candidate}. \hspace{1pt} c \neq !\text{cand} \rightarrow 2 \times \text{numeq } a \hspace{1pt} c \hspace{1pt} 0 \hspace{1pt} i \leq i - !k \}\}

...

second loop

for i = 0 to n-1 do
 invariant \{ !k = \text{numeq } a \hspace{1pt} !\text{cand } 0 \hspace{1pt} i \}\}
 invariant \{ 2 \times !k \leq n \}\}

...
verification conditions express

- safety
 - access within array bounds
 - termination

- user annotations
 - loop invariants are initialized and preserved
 - postconditions are established

fully automated proof
WhyML code can be translated to OCaml code

why3 extract -D ocaml64 -D mjrty -T mjrty.Mjrty -o .

two drivers used here

- a library driver for 64-bit OCaml
 (maps type `int` to Zarith, type `array` to OCaml's arrays, etc.)
- a custom driver for this example, namely

 module mjrty.Mjrty
 syntax type candidate "char"
 end
then we can link extracted code with hand-written code

 ocamlopt ... zarith.cmxa why3extract.cmxa
 mjrty__Mjrty.ml test_mjrty.ml
exercise (lab): two-way sort

sort an array of Boolean, using the following algorithm

```ml
let two_way_sort (a: array bool) =
  let i = ref 0 in
  let j = ref (length a - 1) in
  while !i < !j do
    if not a[!i] then
      incr i
    else if a[!j] then
      decr j
    else begin
      let tmp = a[!i] in
      a[!i] <- a[!j];
      a[!j] <- tmp;
      incr i;
      decr j
    end
  done
```

exercise: ex4_two_way.mlw
exercise (lab): Dutch national flag

an array contains elements of the following enumerated type

type color = Blue | White | Red

sort it, in such a way we have the following final situation:

| ... Blue ... | ... White ... | ... Red ... |
let dutch_flag (a:array color) (n:int) =
 let b = ref 0 in
 let i = ref 0 in
 let r = ref n in
 while !i < !r do
 match a[!i] with
 | Blue →
 swap a !b !i;
 incr b;
 incr i
 | White →
 incr i
 | Red →
 decr r;
 swap a !r !i
 end
 done

let dutch_flag (a:array color) (n:int) =
 let b = ref 0 in
 let i = ref 0 in
 let r = ref n in
 while !i < !r do
 match a[!i] with
 | Blue →
 swap a !b !i;
 incr b;
 incr i
 | White →
 incr i
 | Red →
 decr r;
 swap a !r !i
 end
 done

Blue White ... Red
↑ ↑ ↑ ↑
!b !i !r n

exercise: ex5_flag.mlw
I do not think it means what you think it means
\(\text{lo} \leftarrow 0 \)
\(\text{hi} \leftarrow \text{len}(a) - 1 \)

while \(\text{lo} \leq \text{hi} \) **do**

\(m \leftarrow \text{lo} + (\text{hi} - \text{lo})/2 \)

if \(a[m] < v \)

\(\text{lo} \leftarrow m + 1 \)

else if \(a[m] > v \)

\(\text{hi} \leftarrow m - 1 \)

else

\(\text{return } m \)

\(\text{return } -1 \)
let binary_search (a : array int) (v : int) : int
requires { \(\forall i \ j. \ 0 \leq i \leq j < \text{length} \ a \rightarrow a[i] \leq a[j] \) }
ensures { \(0 \leq \text{result} < \text{length} \ a \land a[\text{result}] = v \) \| \(\text{result} = -1 \land \forall i. \ 0 \leq i < \text{length} \ a \rightarrow a[i] \neq v \) }
another contract

if we write instead

```haskell
let binary_search (a: array int) (v: int) : int
  requires { ∀ i j. 0 ≤ i ≤ j < length a → a[i] ≤ a[j] }
  ensures { (0 ≤ result < length a → a[result] = v) 
            && (result = -1 → ∀ i. 0 ≤ i < length a → a[i] ≠ v) }
```

the program can now return -2 and yet be proved correct
and if we write instead

```plaintext
let binary_search (a: array int) (v: int) : int
  requires { ∀ i j. 0 ≤ i ≤ j < length a → a[i] ≤ a[j] }
  ensures { 0 ≤ result < length a → a[result] = v
            && result = -1 → ∀ i. 0 ≤ i < length a → a[i] ≠ v }
```

(note the missing parentheses)
the program can now return 42 and yet be proved correct!
before you do any proof, get the specification right

even more, have the reviewer agree with you on the spec

otherwise, the whole proof is a waste of time
there are many ways of writing the same specification

some are good for humans, others are good for theorem provers
instead of specifying sortedness like this

\[\text{requires } \{ \forall \ i \ j. \ 0 \leq i \leq j < \text{length } a \rightarrow a[i] \leq a[j] \} \]

we could do it like this

\[\text{requires } \{ \forall \ i. \ 0 \leq i < \text{length } a - 1 \rightarrow a[i] \leq a[i + 1] \} \]

though they are equivalent, the latter now requires induction to discharge the VCs of binary search
(and ATPs typically do not perform induction)
it is easy to get binary search wrong when it comes to termination
(e.g. writing \(lo \leftarrow m \) instead of \(lo \leftarrow m + 1 \))

if you are not proving termination, you can still prove the program
correct but this is partial correctness
ghost code
data and code that is added to the program for the purpose of specification and/or proof only
we search the smallest Fibonacci number equal to or greater than n

\[
\begin{align*}
a, b & \leftarrow 0, 1 \\
\text{while } a < n \text{ do} \\
& \quad a, b \leftarrow b, a + b \\
\text{return } a
\end{align*}
\]
we could have a loop invariant as follows

```ml
let a = ref 0 in
let b = ref 1 in
while !a < n do
  invariant { ∃ i. i ≥ 0 && !a = fib i && !b = fib (i+1) }
  ...
```

but existential quantifiers make VCs that are difficult to discharge
instead, we can keep track of the value of i with a ghost reference

```
let a = ref 0 in
let b = ref 1 in
let ghost i = ref 0 in (* ghost data *)
while !a < n do
    invariant { !i ≥ 0 && !a = fib !i && !b = fib (!i+1) }
    ... 
    i := !i + 1 (* ghost statement *)
done
```

instead of having the ATP guessing the right value, we provide it
rules of the game

- ghost code may read regular data but can’t modify it
- ghost code cannot modify the control flow of regular code
- regular code does not see ghost data

consequence: ghost code can be removed without observable modification (and is removed during OCaml extraction)
a function

```
let f (x: t) : unit
  requires { P }
  ensures { Q }
```

that is pure (i.e. does not modify global data) and terminating can be turned into a lemma automatically

```
lemma f: \forall x: t. P \rightarrow Q
```

the declaration `let lemma` tells Why3 to do that
let rec lemma fib_pos (n: int) : unit
 requires { n ≥ 1 }
 variant { n }
 ensures { fib n ≥ 1 }
 =
 if n > 2 then begin fib_pos (n - 2); fib_pos (n - 1) end
• we have performed a **proof by induction**
 (thanks to the variant and the WP calculus)

• we can make **explicit calls** to a lemma function

```
fib_pos 42;  (* this is ghost code *)
...
```

it saves ATPs the burden of instantiating the lemma
ghost code can be used to model the contents of a data structure
say we want to implement a queue with bounded capacity

\begin{verbatim}
 type queue α
 val create: int → queue α
 val push: α → queue α → unit
 val pop: queue α → α
\end{verbatim}
it can be implemented with an array

```plaintext
type buffer α = {
    mutable first: int;
    mutable len : int;
    data : array α;
}
```

len elements are stored, starting at index first

they may wrap around the array bounds
to give a specification to queue operations, we would like to model the queue contents, say, as a sequence of elements.

One way to do it is to use ghost code.
we add two ghost fields to model the queue contents

type queue α = {

 ...

 ghost capacity: int;
 ghost mutable sequence: Seq.seq α;

}
then we use them in specifications

```ocaml
val create (n: int) (dummy: α): queue α
  requires { n > 0 }
  ensures { result.capacity = n }
  ensures { result.sequence = Seq.empty }
```

```ocaml
val push (q: queue α) (x: α): unit
  requires { Seq.length q.sequence < q.capacity }
  writes { q.sequence }
  ensures { q.sequence = Seq.snoc (old q.sequence) x }
```

```ocaml
val pop (q: queue α): α
  requires { Seq.length q.sequence > 0 }
  writes { q.sequence }
  ensures { result = (old q.sequence)[0] }
  ensures { q.sequence = (old q.sequence)[1 ..] }
```
we are already able to prove some **client code** using the queue

```ocaml
let harness () =
  let q = create 10 0 in
  push q 1;
  push q 2;
  push q 3;
  let x = pop q in assert { x = 1 };
  let x = pop q in assert { x = 2 };
  let x = pop q in assert { x = 3 };
()```

abstraction
we link the regular fields and the ghost fields with a type invariant

type buffer α =

... invariant { 
  self.capacity = Array.length self.data ∧
  0 ≤ self.first < self.capacity ∧
  0 ≤ self.len ≤ self.capacity ∧
  self.len = Seq.length self.sequence ∧
  ∀ i: int. 0 ≤ i < self.len →
    (self.first + i < self.capacity →
      Seq.get self.sequence i = self.data[self.first + i]) ∧
    (0 ≤ self.first + i - self.capacity →
      Seq.get self.sequence i = self.data[self.first + i - self.capacity])
}
such a type invariant holds at **function boundaries**

thus

- it is **assumed** at function entry
- it must be **ensured**
  - when a function is called
  - at function exit, for values returned or modified
ghost code is added to set ghost fields accordingly

example:

```ocaml
let push (b: buffer α) (x: α): unit =
 ghost b.sequence ← Seq.snoc b.sequence x;
 let i = b.first + b.len in
 let n = Array.length b.data in
 b.data[if i ≥ n then i - n else i] ← x;
 b.len ← b.len + 1
```
implement other operations

• clear

• head

• pop

on ring buffers and prove them correct

exercise: ex6_buffer.mlw
purely applicative programming
other data structures

a key idea of Hoare logic:

any types and symbols from the logic can be used in programs

note: we already used type int this way
we can do so with algebraic data types

in the library, we find

type bool = True | False  (in bool.Bool)
type option α = None | Some α  (in option.Option)
type list α = Nil | Cons α (list α)  (in list.List)
let us consider binary trees

type elt

type tree =
  | Empty
  | Node tree elt tree

and the following problem
given two binary trees, do they contain the same elements when traversed in order?
function elements (t: tree) : list elt = match t with
    | Empty → Nil
    | Node l x r → elements l ++ Cons x (elements r)
end

let same_fringe (t1 t2: tree) : bool
  ensures { result=True ↔ elements t1 = elements t2 }
  =
  ...

one solution: look at the left branch as a list, from bottom up
one solution: look at the left branch as a list, from bottom up

demo (access code)
type elt
type tree = Null | Node tree elt tree

inorder traversal of \( t \), storing its elements in array \( a \)

```ml
let rec fill (t: tree) (a: array elt) (start: int) : int =
 match t with
 | Null →
 start
 | Node l x r →
 let res = fill l a start in
 if res \neq length a then begin
 a[res] ← x;
 fill r a (res + 1)
 end else
 res
end
```

exercise: ex7_fill.mlw
machine arithmetic
let us model signed 32-bit arithmetic

two possibilities:

- ensure absence of arithmetic overflow
- model machine arithmetic faithfully (i.e. with overflows)

a constraint:
we do not want to lose the arithmetic capabilities of SMT solvers
we introduce a new type for 32-bit integers

\texttt{type int32}

its integer value is given by

\texttt{function toint int32 : int}

main idea: within annotations, we only use type \texttt{int} (thus a program variable \texttt{x : int32} always appears as \texttt{toint x} in annotations)
we define the range of 32-bit integers

\[
\text{function min\_int: int} = -0x8000\_0000 (* -2^{31} *)
\]

\[
\text{function max\_int: int} = 0x7FFF\_FFFF (* 2^{31} -1 *)
\]

when we use them...

\[
\text{axiom int32\_domain:}
\]

\[
\forall x: \text{int32}. \text{min\_int} \leq \text{toint x} \leq \text{max\_int}
\]

... and when we build them

\[
\text{val ofint (x: int): int32}
\]

\[
\text{requires}\ \{ \text{min\_int} \leq x \leq \text{max\_int} \}
\]

\[
\text{ensures}\ \{ \text{toint result} = x \}
\]
then each program expression such as

\[ x + y \]

is translated into

\[ \text{ofint} (\text{toint} \ x + \ \text{toint} \ y) \]

this ensures the absence of arithmetic overflow
(but we get a large number of additional verification conditions)
let us show the absence of arithmetic overflow in binary search

demo (access code)
we found a bug

the computation

\[
\text{let } m = (\!l + \!u) / 2 \text{ in}
\]

may provoke an arithmetic overflow
(for instance with a 2-billion elements array)

a possible fix is

\[
\text{let } m = \!l + (\!u - \!l) / 2 \text{ in}
\]
conclusion
three different ways of using Why3

- as a logical language  
  (a convenient front-end to many theorem provers)

- as a programming language to prove algorithms  
  (currently 120 examples in our gallery)

- as an intermediate language  
  (for the verification of C, Java, Ada, etc.)
some systems using Why3

- Ada
- SPARK2014
- Java
- Krakatoa
- C
- Frama-C
- Jessie
- WP
- prob. pgms
- Easycrypt

Why3

WhyML

logic

proof assistants

SMT solvers

ATP systems

other provers
things not covered in this lecture

- how aliases are controlled
- how verification conditions are computed
- how formulas are sent to provers
- how pointers/heap are modeled
- how floating-point arithmetic is modeled
- etc.

see http://why3.lri.fr for more details
there are many other ways to perform program verification, e.g.

- abstract interpretation
- model checking

including other ways to perform deductive verification

- dedicated program logic e.g. separation logic
- symbolic evaluation
see http://why3.lri.fr/ssft-16/

uses a simpler version of the Why3 GUI running in your browser

only one prover available (Alt-Ergo 1.00)