Why3 Standard Library index



Multisets (aka bags)

theory Bag

  use import int.Int

  type bag 'a

whatever 'a, the type bag 'a is always infinite

  meta "infinite_type" type bag

the most basic operation is the number of occurrences

  function nb_occ (x: 'a) (b: bag 'a): int

  axiom occ_non_negative: forall b: bag 'a, x: 'a. nb_occ x b >= 0

  predicate mem (x: 'a) (b: bag 'a) = nb_occ x b > 0

equality of bags

  predicate eq_bag (a b: bag 'a) =
    forall x:'a. nb_occ x a = nb_occ x b

  axiom bag_extensionality: forall a b: bag 'a. eq_bag a b -> a = b

basic constructors of bags

  function empty_bag: bag 'a

  axiom occ_empty: forall x: 'a. nb_occ x empty_bag = 0

  lemma is_empty: forall b: bag 'a.
    (forall x: 'a. nb_occ x b = 0) -> b = empty_bag

  function singleton (x: 'a) : bag 'a

  axiom occ_singleton: forall x y: 'a.
    (x = y /\ (nb_occ y (singleton x)) = 1) \/
    (x <> y /\ (nb_occ y (singleton x)) = 0)
    (* FIXME? nb_occ y (singleton x) = if x = y then 1 else 0 *)

  lemma occ_singleton_eq:
    forall x y: 'a. x = y -> nb_occ y (singleton x) = 1
  lemma occ_singleton_neq:
    forall x y: 'a. x <> y -> nb_occ y (singleton x) = 0

  function union (bag 'a) (bag 'a) : bag 'a

  axiom occ_union:
    forall x: 'a, a b: bag 'a.
    nb_occ x (union a b) = nb_occ x a + nb_occ x b

union commutative, associative with identity empty_bag

  lemma Union_comm: forall a b: bag 'a. union a b = union b a

  lemma Union_identity: forall a: bag 'a. union a empty_bag = a

  lemma Union_assoc:
    forall a b c: bag 'a. union a (union b c) = union (union a b) c

  lemma bag_simpl_right:
    forall a b c: bag 'a. union a b = union c b -> a = c

  lemma bag_simpl_left:
    forall a b c: bag 'a. union a b = union a c -> b = c

add operation

  function add (x: 'a) (b: bag 'a) : bag 'a = union (singleton x) b

  lemma occ_add_eq:
    forall b: bag 'a, x y: 'a.
    x = y -> nb_occ y (add x b) = nb_occ y b + 1

  lemma occ_add_neq: forall b: bag 'a, x y: 'a.
    x <> y -> nb_occ y (add x b) = nb_occ y b

cardinality of bags

  function card (bag 'a): int

  axiom Card_nonneg: forall x: bag 'a. card x >= 0
  axiom Card_empty: card (empty_bag: bag 'a) = 0
  axiom Card_zero_empty: forall x: bag 'a. card x = 0 -> x = empty_bag

  axiom Card_singleton: forall x:'a. card (singleton x) = 1
  axiom Card_union: forall x y: bag 'a. card (union x y) = card x + card y
  lemma Card_add: forall x: 'a, b: bag 'a. card (add x b) = 1 + card b

bag difference

  use import int.MinMax

  function diff (bag 'a) (bag 'a) : bag 'a

  axiom Diff_occ: forall b1 b2: bag 'a, x:'a.
    nb_occ x (diff b1 b2) = max 0 (nb_occ x b1 - nb_occ x b2)

  lemma Diff_empty_right: forall b: bag 'a. diff b empty_bag = b
  lemma Diff_empty_left: forall b: bag 'a. diff empty_bag b = empty_bag

  lemma Diff_add: forall b: bag 'a, x:'a. diff (add x b) (singleton x) = b

  lemma Diff_comm:
    forall b b1 b2: bag 'a. diff (diff b b1) b2 = diff (diff b b2) b1

  lemma Add_diff: forall b: bag 'a, x:'a.
    mem x b -> add x (diff b (singleton x)) = b

arbitrary element

  function choose (b: bag 'a) : 'a

  axiom choose_mem: forall b: bag 'a.
    empty_bag <> b -> mem (choose b) b

end

Generated by why3doc 0.88.0