Why3 Standard Library index
module Pow2int use int.Int function pow2 (i:int) : int axiom Power_0 : pow2 0 = 1 axiom Power_s : forall n: int. n >= 0 -> pow2 (n+1) = 2 * pow2 n lemma Power_1 : pow2 1 = 2 lemma Power_sum : forall n m: int. n >= 0 /\ m >= 0 -> pow2 (n+m) = pow2 n * pow2 m lemma pow2pos: forall i:int. i >= 0 -> pow2 i > 0 lemma pow2_0: pow2 0 = 0x1 lemma pow2_1: pow2 1 = 0x2 lemma pow2_2: pow2 2 = 0x4 lemma pow2_3: pow2 3 = 0x8 lemma pow2_4: pow2 4 = 0x10 lemma pow2_5: pow2 5 = 0x20 lemma pow2_6: pow2 6 = 0x40 lemma pow2_7: pow2 7 = 0x80 lemma pow2_8: pow2 8 = 0x100 lemma pow2_9: pow2 9 = 0x200 lemma pow2_10: pow2 10 = 0x400 lemma pow2_11: pow2 11 = 0x800 lemma pow2_12: pow2 12 = 0x1000 lemma pow2_13: pow2 13 = 0x2000 lemma pow2_14: pow2 14 = 0x4000 lemma pow2_15: pow2 15 = 0x8000 lemma pow2_16: pow2 16 = 0x10000 lemma pow2_17: pow2 17 = 0x20000 lemma pow2_18: pow2 18 = 0x40000 lemma pow2_19: pow2 19 = 0x80000 lemma pow2_20: pow2 20 = 0x100000 lemma pow2_21: pow2 21 = 0x200000 lemma pow2_22: pow2 22 = 0x400000 lemma pow2_23: pow2 23 = 0x800000 lemma pow2_24: pow2 24 = 0x1000000 lemma pow2_25: pow2 25 = 0x2000000 lemma pow2_26: pow2 26 = 0x4000000 lemma pow2_27: pow2 27 = 0x8000000 lemma pow2_28: pow2 28 = 0x10000000 lemma pow2_29: pow2 29 = 0x20000000 lemma pow2_30: pow2 30 = 0x40000000 lemma pow2_31: pow2 31 = 0x80000000 lemma pow2_32: pow2 32 = 0x100000000 lemma pow2_33: pow2 33 = 0x200000000 lemma pow2_34: pow2 34 = 0x400000000 lemma pow2_35: pow2 35 = 0x800000000 lemma pow2_36: pow2 36 = 0x1000000000 lemma pow2_37: pow2 37 = 0x2000000000 lemma pow2_38: pow2 38 = 0x4000000000 lemma pow2_39: pow2 39 = 0x8000000000 lemma pow2_40: pow2 40 = 0x10000000000 lemma pow2_41: pow2 41 = 0x20000000000 lemma pow2_42: pow2 42 = 0x40000000000 lemma pow2_43: pow2 43 = 0x80000000000 lemma pow2_44: pow2 44 = 0x100000000000 lemma pow2_45: pow2 45 = 0x200000000000 lemma pow2_46: pow2 46 = 0x400000000000 lemma pow2_47: pow2 47 = 0x800000000000 lemma pow2_48: pow2 48 = 0x1000000000000 lemma pow2_49: pow2 49 = 0x2000000000000 lemma pow2_50: pow2 50 = 0x4000000000000 lemma pow2_51: pow2 51 = 0x8000000000000 lemma pow2_52: pow2 52 = 0x10000000000000 lemma pow2_53: pow2 53 = 0x20000000000000 lemma pow2_54: pow2 54 = 0x40000000000000 lemma pow2_55: pow2 55 = 0x80000000000000 lemma pow2_56: pow2 56 = 0x100000000000000 lemma pow2_57: pow2 57 = 0x200000000000000 lemma pow2_58: pow2 58 = 0x400000000000000 lemma pow2_59: pow2 59 = 0x800000000000000 lemma pow2_60: pow2 60 = 0x1000000000000000 lemma pow2_61: pow2 61 = 0x2000000000000000 lemma pow2_62: pow2 62 = 0x4000000000000000 lemma pow2_63: pow2 63 = 0x8000000000000000 lemma pow2_64: pow2 64 = 0x10000000000000000 end
module BV_Gen use export bool.Bool use int.Int constant size : int axiom size_pos : size > 0 type t val function nth t int : bool
nth b n
is the n
-th bit of b
. Bit 0 is
the least significant bit
axiom nth_out_of_bound: forall x n. n < 0 \/ n >= size -> nth x n = False val constant zeros : t axiom Nth_zeros: forall n:int. nth zeros n = False val constant one : t val constant ones : t axiom Nth_ones: forall n. 0 <= n < size -> nth ones n = True
Bitwise operators
(* /!\ NOTE : both bw_and and bw_or don't need guard on n because of nth out of bound axiom *) val function bw_and (v1 v2 : t) : t axiom Nth_bw_and: forall v1 v2:t, n:int. 0 <= n < size -> nth (bw_and v1 v2) n = andb (nth v1 n) (nth v2 n) val function bw_or (v1 v2 : t) : t axiom Nth_bw_or: forall v1 v2:t, n:int. 0 <= n < size -> nth (bw_or v1 v2) n = orb (nth v1 n) (nth v2 n) val function bw_xor (v1 v2 : t) : t axiom Nth_bw_xor: forall v1 v2:t, n:int. 0 <= n < size -> nth (bw_xor v1 v2) n = xorb (nth v1 n) (nth v2 n) val function bw_not (v : t) : t axiom Nth_bw_not: forall v:t, n:int. 0 <= n < size -> nth (bw_not v) n = notb (nth v n)
Shift operators
Warning: shift operators of an amount greater than or equal to
the size are specified here, in concordance with SMTLIB. This is
not necessarily the case in hardware, where the amount of the
shift might be taken modulo the size, eg. lsr x 64
might be
equal to x
, whereas in this theory it is 0.
val function lsr t int : t axiom Lsr_nth_low: forall b:t,n s:int. 0 <= s -> 0 <= n -> n+s < size -> nth (lsr b s) n = nth b (n+s) axiom Lsr_nth_high: forall b:t,n s:int. 0 <= s -> 0 <= n -> n+s >= size -> nth (lsr b s) n = False lemma lsr_zeros: forall x. lsr x 0 = x val function asr t int : t axiom Asr_nth_low: forall b:t,n s:int. 0 <= s -> 0 <= n < size -> n+s < size -> nth (asr b s) n = nth b (n+s) axiom Asr_nth_high: forall b:t,n s:int. 0 <= s -> 0 <= n < size -> n+s >= size -> nth (asr b s) n = nth b (size-1) lemma asr_zeros: forall x. asr x 0 = x val function lsl t int : t axiom Lsl_nth_high: forall b:t,n s:int. 0 <= s <= n < size -> nth (lsl b s) n = nth b (n-s) axiom Lsl_nth_low: forall b:t,n s:int. 0 <= n < s -> nth (lsl b s) n = False lemma lsl_zeros: forall x. lsl x 0 = x use int.EuclideanDivision (* use int.ComputerDivision as CD*) function rotate_right t int : t axiom Nth_rotate_right : forall v n i. 0 <= i < size -> 0 <= n -> nth (rotate_right v n) i = nth v (mod (i + n) size) function rotate_left t int : t axiom Nth_rotate_left : forall v n i. 0 <= i < size -> 0 <= n -> nth (rotate_left v n) i = nth v (mod (i - n) size)
Conversions from/to integers
use Pow2int constant two_power_size : int (* not needed yet, since sdiv and srem are not yet realized constant two_power_size_minus_one : int *) constant max_int : int axiom two_power_size_val : two_power_size = pow2 size (* not needed yet, since sdiv and srem are not yet realized axiom two_power_size_minus_one_val : two_power_size_minus_one = pow2 (size-1) *) axiom max_int_val : max_int = two_power_size - 1 predicate is_signed_positive t function to_uint t : int val to_uint (x:t) : int ensures { result = to_uint x } val function of_int int : t function to_int (x:t) : int = if (is_signed_positive x) then (to_uint x) else (- (two_power_size - (to_uint x))) val to_int (x:t) : int ensures { result = to_int x } axiom to_uint_extensionality : forall v,v':t. to_uint v = to_uint v' -> v = v' axiom to_int_extensionality: forall v,v':t. to_int v = to_int v' -> v = v' (* *) predicate uint_in_range (i : int) = (Int.(<=) 0 i) /\ (Int.(<=) i max_int) (* *) axiom to_uint_bounds : (* forall v:t. uint_in_range (to_uint v) *) forall v:t. 0 <= to_uint v < two_power_size axiom to_uint_of_int : forall i. 0 <= i < two_power_size -> to_uint (of_int i) = i (* not yet realized axiom to_int_bounds : forall v:t. - two_power_size_minus_one <= to_int v < two_power_size_minus_one axiom to_int_of_int : forall i. - two_power_size_minus_one <= i < two_power_size_minus_one -> to_int (of_int i) = i *) constant size_bv : t axiom to_uint_size_bv : to_uint size_bv = size axiom to_uint_zeros : to_uint zeros = 0 axiom to_uint_one : to_uint one = 1 axiom to_uint_ones : to_uint ones = max_int
comparison operators
let predicate ult (x y : t) = Int.(<) (to_uint x) (to_uint y) let predicate ule (x y : t) = Int.(<=) (to_uint x) (to_uint y) let predicate ugt (x y : t) = Int.(>) (to_uint x) (to_uint y) let predicate uge (x y : t) = Int.(>=) (to_uint x) (to_uint y) let predicate slt (v1 v2 : t) = Int.(<) (to_int v1) (to_int v2) let predicate sle (v1 v2 : t) = Int.(<=) (to_int v1) (to_int v2) let predicate sgt (v1 v2 : t) = Int.(>) (to_int v1) (to_int v2) let predicate sge (v1 v2 : t) = Int.(>=) (to_int v1) (to_int v2) axiom positive_is_ge_zeros: forall x. is_signed_positive x = sge x zeros
Arithmetic operators
val function add (v1 v2 : t) : t axiom to_uint_add: forall v1 v2. to_uint (add v1 v2) = mod (Int.(+) (to_uint v1) (to_uint v2)) two_power_size lemma to_uint_add_bounded: forall v1 v2. to_uint v1 + to_uint v2 < two_power_size -> to_uint (add v1 v2) = to_uint v1 + to_uint v2 val function sub (v1 v2 : t) : t axiom to_uint_sub: forall v1 v2. to_uint (sub v1 v2) = mod (Int.(-) (to_uint v1) (to_uint v2)) two_power_size lemma to_uint_sub_bounded: forall v1 v2. 0 <= to_uint v1 - to_uint v2 < two_power_size -> to_uint (sub v1 v2) = to_uint v1 - to_uint v2 val function neg (v1 : t) : t axiom to_uint_neg: forall v. to_uint (neg v) = mod (Int.(-_) (to_uint v)) two_power_size val function mul (v1 v2 : t) : t axiom to_uint_mul: forall v1 v2. to_uint (mul v1 v2) = mod (Int.( * ) (to_uint v1) (to_uint v2)) two_power_size lemma to_uint_mul_bounded: forall v1 v2. to_uint v1 * to_uint v2 < two_power_size -> to_uint (mul v1 v2) = to_uint v1 * to_uint v2 val function udiv (v1 v2 : t) : t axiom to_uint_udiv: forall v1 v2. to_uint (udiv v1 v2) = div (to_uint v1) (to_uint v2) val function urem (v1 v2 : t) : t axiom to_uint_urem: forall v1 v2. to_uint (urem v1 v2) = mod (to_uint v1) (to_uint v2) val function sdiv (v1 v2 : t) : t (* not yet realized axiom to_int_sdiv: forall v1 v2. to_int (sdiv v1 v2) = CD.mod (CD.div (to_int v1) (to_int v2)) two_power_size axiom to_int_sdiv_bounded: forall v1 v2. v1 <> (lsl one (size-1)) \/ v2 <> ones -> to_int (sdiv v1 v2) = CD.div (to_int v1) (to_int v2) *) val function srem (v1 v2 : t) : t (* not yet realized axiom to_int_srem: forall v1 v2. to_int (srem v1 v2) = CD.mod (to_int v1) (to_int v2) *)
Bitvector alternatives for shifts, rotations and nth
val function lsr_bv t t : t
logical shift right
axiom lsr_bv_is_lsr: forall x n. lsr_bv x n = lsr x (to_uint n) axiom to_uint_lsr: forall v n : t. to_uint (lsr_bv v n) = div (to_uint v) (pow2 ( to_uint n )) val function asr_bv t t : t
arithmetic shift right
axiom asr_bv_is_asr: forall x n. asr_bv x n = asr x (to_uint n) val function lsl_bv t t : t
logical shift left
axiom lsl_bv_is_lsl: forall x n. lsl_bv x n = lsl x (to_uint n) axiom to_uint_lsl: forall v n : t. to_uint (lsl_bv v n) = mod (Int.( * ) (to_uint v) (pow2 (to_uint n))) two_power_size
rotations
val function rotate_right_bv (v n : t) : t val function rotate_left_bv (v n : t) : t axiom rotate_left_bv_is_rotate_left : forall v n. rotate_left_bv v n = rotate_left v (to_uint n) axiom rotate_right_bv_is_rotate_right : forall v n. rotate_right_bv v n = rotate_right v (to_uint n) val function nth_bv t t: bool axiom nth_bv_def: forall x i. nth_bv x i = not (bw_and (lsr_bv x i) one = zeros) axiom Nth_bv_is_nth: forall x i. nth x (to_uint i) = nth_bv x i axiom Nth_bv_is_nth2: forall x i. 0 <= i < two_power_size -> nth_bv x (of_int i) = nth x i
equality axioms
predicate eq_sub_bv t t t t axiom eq_sub_bv_def: forall a b i n. let mask = lsl_bv (sub (lsl_bv one n) one) i in eq_sub_bv a b i n = (bw_and b mask = bw_and a mask) predicate eq_sub (a b:t) (i n:int) = forall j. i <= j < i + n -> nth a j = nth b j axiom eq_sub_equiv: forall a b i n:t. eq_sub a b (to_uint i) (to_uint n) <-> eq_sub_bv a b i n predicate (==) (v1 v2 : t) = eq_sub v1 v2 0 size axiom Extensionality [@W:non_conservative_extension:N] : forall x y : t [x == y]. x == y -> x = y val eq (v1 v2 : t) : bool ensures { result <-> v1 = v2 } end
module BV256 constant size : int = 256 constant two_power_size : int = 0x1_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000 use int.Int as Int (* needed to use range types *) type t = < range 0 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF > clone export BV_Gen with type t = t, function to_uint = t'int, constant size = size, constant two_power_size = two_power_size, constant max_int = t'maxInt, goal size_pos, goal two_power_size_val, goal max_int_val, axiom . (* should this be "lemma"? "goal"? *) end module BV128 constant size : int = 128 constant two_power_size : int = 0x1_0000_0000_0000_0000_0000_0000_0000_0000 use int.Int as Int (* needed to use range types *) type t = < range 0 0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF > clone export BV_Gen with type t = t, function to_uint = t'int, constant size = size, constant two_power_size = two_power_size, constant max_int = t'maxInt, goal size_pos, goal two_power_size_val, goal max_int_val, axiom . (* should this be "lemma"? "goal"? *) end module BV64 constant size : int = 64 constant two_power_size : int = 0x1_0000_0000_0000_0000 use int.Int as Int (* needed to use range types *) type t = < range 0 0xFFFF_FFFF_FFFF_FFFF > clone export BV_Gen with type t = t, function to_uint = t'int, constant size = size, constant two_power_size = two_power_size, constant max_int = t'maxInt, goal size_pos, goal two_power_size_val, goal max_int_val, axiom . (* should this be "lemma"? "goal"? *) end module BV32 constant size : int = 32 constant two_power_size : int = 0x1_0000_0000 use int.Int as Int (* needed to use range types *) type t = < range 0 0xFFFF_FFFF > clone export BV_Gen with type t = t, function to_uint = t'int, constant size = size, constant two_power_size = two_power_size, constant max_int = t'maxInt, goal size_pos, goal two_power_size_val, goal max_int_val, axiom . (* should this be "lemma"? "goal"? *) end module BV16 constant size : int = 16 constant two_power_size : int = 0x1_0000 use int.Int as Int (* needed to use range types *) type t = < range 0 0xFFFF > clone export BV_Gen with type t = t, function to_uint = t'int, constant size = size, constant two_power_size = two_power_size, constant max_int = t'maxInt, goal size_pos, goal two_power_size_val, goal max_int_val, axiom . (* should this be "lemma"? "goal"? *) end module BV8 constant size : int = 8 constant two_power_size : int = 0x1_00 use int.Int as Int (* needed to use range types *) type t = < range 0 0xFF > clone export BV_Gen with type t = t, function to_uint = t'int, constant size = size, constant two_power_size = two_power_size, constant max_int = t'maxInt, goal size_pos, goal two_power_size_val, goal max_int_val, axiom . (* should this be "lemma"? "goal"? *) end
module BVConverter_Gen type bigBV type smallBV predicate in_small_range bigBV function to_uint_small smallBV : int function to_uint_big bigBV : int val function toBig smallBV : bigBV val function toSmall bigBV : smallBV axiom toSmall_to_uint : forall x:bigBV. in_small_range x -> to_uint_big x = to_uint_small (toSmall x) axiom toBig_to_uint : forall x:smallBV. to_uint_small x = to_uint_big (toBig x) end
module BVConverter_128_256 use BV128 as BV128 use BV256 as BV256 predicate in_range (b : BV256.t) = BV256.ule b (0xFFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF:BV256.t) clone export BVConverter_Gen with type bigBV = BV256.t, type smallBV = BV128.t, predicate in_small_range = in_range, function to_uint_small = BV128.t'int, function to_uint_big = BV256.t'int, axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *) axiom toBig_to_uint (* TODO: "lemma"? "goal"? *) end module BVConverter_64_128 use BV64 as BV64 use BV128 as BV128 predicate in_range (b : BV128.t) = BV128.ule b (0xFFFF_FFFF_FFFF_FFFF:BV128.t) clone export BVConverter_Gen with type bigBV = BV128.t, type smallBV = BV64.t, predicate in_small_range = in_range, function to_uint_small = BV64.t'int, function to_uint_big = BV128.t'int, axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *) axiom toBig_to_uint (* TODO: "lemma"? "goal"? *) end module BVConverter_32_128 use BV32 as BV32 use BV128 as BV128 predicate in_range (b : BV128.t) = BV128.ule b (0xFFFF_FFFF:BV128.t) clone export BVConverter_Gen with type bigBV = BV128.t, type smallBV = BV32.t, predicate in_small_range = in_range, function to_uint_small = BV32.t'int, function to_uint_big = BV128.t'int, axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *) axiom toBig_to_uint (* TODO: "lemma"? "goal"? *) end module BVConverter_16_128 use BV16 as BV16 use BV128 as BV128 predicate in_range (b : BV128.t) = BV128.ule b (0xFFFF:BV128.t) clone export BVConverter_Gen with type bigBV = BV128.t, type smallBV = BV16.t, predicate in_small_range = in_range, function to_uint_small = BV16.t'int, function to_uint_big = BV128.t'int, axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *) axiom toBig_to_uint (* TODO: "lemma"? "goal"? *) end module BVConverter_8_128 use BV8 as BV8 use BV128 as BV128 predicate in_range (b : BV128.t) = BV128.ule b (0xFF:BV128.t) clone export BVConverter_Gen with type bigBV = BV128.t, type smallBV = BV8.t, predicate in_small_range = in_range, function to_uint_small = BV8.t'int, function to_uint_big = BV128.t'int, axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *) axiom toBig_to_uint (* TODO: "lemma"? "goal"? *) end module BVConverter_32_64 use BV32 as BV32 use BV64 as BV64 predicate in_range (b : BV64.t) = BV64.ule b (0xFFFF_FFFF:BV64.t) clone export BVConverter_Gen with type bigBV = BV64.t, type smallBV = BV32.t, predicate in_small_range = in_range, function to_uint_small = BV32.t'int, function to_uint_big = BV64.t'int, axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *) axiom toBig_to_uint (* TODO: "lemma"? "goal"? *) end module BVConverter_16_64 use BV16 as BV16 use BV64 as BV64 predicate in_range (b : BV64.t) = BV64.ule b (0xFFFF:BV64.t) clone export BVConverter_Gen with type bigBV = BV64.t, type smallBV = BV16.t, predicate in_small_range = in_range, function to_uint_small = BV16.t'int, function to_uint_big = BV64.t'int, axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *) axiom toBig_to_uint (* TODO: "lemma"? "goal"? *) end module BVConverter_8_64 use BV8 as BV8 use BV64 as BV64 predicate in_range (b : BV64.t) = BV64.ule b (0xFF:BV64.t) clone export BVConverter_Gen with type bigBV = BV64.t, type smallBV = BV8.t, predicate in_small_range = in_range, function to_uint_small = BV8.t'int, function to_uint_big = BV64.t'int, axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *) axiom toBig_to_uint (* TODO: "lemma"? "goal"? *) end module BVConverter_16_32 use BV16 as BV16 use BV32 as BV32 predicate in_range (b : BV32.t) = BV32.ule b (0xFFFF:BV32.t) clone export BVConverter_Gen with type bigBV = BV32.t, type smallBV = BV16.t, predicate in_small_range = in_range, function to_uint_small = BV16.t'int, function to_uint_big = BV32.t'int, axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *) axiom toBig_to_uint (* TODO: "lemma"? "goal"? *) end module BVConverter_8_32 use BV8 as BV8 use BV32 as BV32 predicate in_range (b : BV32.t) = BV32.ule b (0xFF:BV32.t) clone export BVConverter_Gen with type bigBV = BV32.t, type smallBV = BV8.t, predicate in_small_range = in_range, function to_uint_small = BV8.t'int, function to_uint_big = BV32.t'int, axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *) axiom toBig_to_uint (* TODO: "lemma"? "goal"? *) end module BVConverter_8_16 use BV8 as BV8 use BV16 as BV16 predicate in_range (b : BV16.t) = BV16.ule b (0xFF:BV16.t) clone export BVConverter_Gen with type bigBV = BV16.t, type smallBV = BV8.t, predicate in_small_range = in_range, function to_uint_small = BV8.t'int, function to_uint_big = BV16.t'int, axiom toSmall_to_uint, (* TODO: "lemma"? "goal"? *) axiom toBig_to_uint (* TODO: "lemma"? "goal"? *) end
Generated by why3doc 1.4.0