Why3 Standard Library index


Machine Arithmetic

Integer Division

It is checked that divisor is not null.

module Int

  use export int.Int
  use export int.ComputerDivision

  let (/) (x: int) (y: int)
    requires { [@expl:check division by zero] y <> 0 }
    ensures  { result = div x y }
  = div x y

  let (%) (x: int) (y: int)
    requires { [@expl:check modulo by zero] y <> 0 }
    ensures  { result = mod x y }
  = mod x y

end

Machine integers

Bounded integers, typically n-bit signed and unsigned integers, go here. We first introduce a generic theory [Bounded_int] of bounded integers, with minimal and maximal values (resp. [min] and [max]). Then we instantiate it to get 32-bit and 64-bit signed and unsigned integers ([Int32], [UInt32], [Int64], and [UInt64]) as well as 31-bit and 63-bit signed integers ([Int31] and [Int63]) to be used in OCaml programs.

module Bounded_int

  use int.Int

  type t

  constant min : int
  constant max : int

  function to_int (n:t) : int
  meta coercion function to_int
  meta "model_projection" function to_int

  val to_int (n:t) : int
    ensures { result = n }

  predicate in_bounds (n:int) = min <= n <= max

  axiom to_int_in_bounds: forall n:t. in_bounds n

  val of_int (n:int) : t
    requires { [@expl:integer overflow] in_bounds n }
    ensures  { result = n }

  val (+) (a:t) (b:t) : t
    requires { [@expl:integer overflow] in_bounds (a + b) }
    ensures   { result = a + b }

  val (-) (a:t) (b:t) : t
    requires { [@expl:integer overflow] in_bounds (a - b) }
    ensures  { result = a - b }

  val (*) (a:t) (b:t) : t
    requires { [@expl:integer overflow] in_bounds (a * b) }
    ensures  { result = a * b }

  val (-_) (a:t) : t
    requires { [@expl:integer overflow] in_bounds (- a) }
    ensures  { result = - a }

  axiom extensionality: forall x y: t. to_int x = to_int y -> x = y

  val (=) (a:t) (b:t) : bool
    ensures { to_int a = to_int b -> result }
    ensures { result -> a = b }

  val (<=) (a:t) (b:t) : bool
    ensures  { result <-> to_int a <= to_int b }

  val (<) (a:t) (b:t) : bool
    ensures  { result <-> to_int a < to_int b }

  val (>=) (a:t) (b:t) : bool
    ensures  { result <-> to_int a >= to_int b }

  val (>) (a:t) (b:t) : bool
    ensures  { result <-> to_int a > to_int b }

  use int.ComputerDivision

  val (/) (a:t) (b:t) : t
    requires { [@expl:division by zero] b <> 0 }
    requires { [@expl:integer overflow] in_bounds (div a b) }
    ensures  { result = div a b }

  val (%) (a:t) (b:t) : t
    requires { [@expl:division by zero] b <> 0 }
    requires { [@expl:integer overflow] in_bounds (mod a b) }
    ensures  { result = mod a b }

end

module Unsigned

  use int.Int

  let constant min_unsigned : int = 0

  clone export Bounded_int with
    constant min = min_unsigned, axiom .

  constant zero_unsigned : t

  axiom zero_unsigned_is_zero : to_int zero_unsigned = 0

  constant radix : int

  axiom radix_def : radix = max+1

end

module UnsignedGMP

Additional GMP-inspired arithmetic primitives

  use int.Int
  clone export Unsigned with axiom .
  use int.EuclideanDivision

  val add_mod (x y:t) : t
    ensures { to_int result = mod (to_int x + to_int y) (max+1) }

  val add_with_carry (x y:t) (c:t) : (t,t)
    requires { 0 <= to_int c <= 1 }
    returns { (r,d) ->
      to_int r + radix * to_int d =
      to_int x + to_int y + to_int c
      /\ 0 <= to_int d <= 1 }

  (* add_ssaaaa *)
  val add_double (a1 a0 b1 b0:t) : (t,t)
    returns { (h,l) -> l + radix * h
                     = mod (a0 + radix * a1 + b0 + radix * b1) (radix * radix) }

  (* add_ssaaaa with no overflow *)
  val add_double_nc (a1 a0 b1 b0:t) : (t,t)
    requires { a0 + radix * a1 + b0 + radix * b1 < radix * radix }
    returns  { (h, l) -> l + radix * h = a0 + radix * a1 + b0 + radix * b1 }

  (* add_ssaaaa with ghost carry *)
  val add_double_gc (a1 a0 b1 b0:t) : (ghost t, t, t)
    returns  { (c,h,l) -> l + radix * h + radix * radix * c
                          = a0 + radix * a1 + b0 + radix * b1
                        /\ 0 <= to_int c <= 1 }

  val sub_mod (x y:t) : t
    ensures { to_int result = mod (to_int x - to_int y) radix }

  val sub_with_borrow (x y:t) (b:t) : (t,t)
    requires { 0 <= to_int b <= 1 }
    returns { (r, d) ->
      to_int r - radix * to_int d  =
      to_int x - to_int y - to_int b
      /\ 0 <= to_int d <= 1 }

  (* sub_ddmmss *)
  val sub_double (a1 a0 b1 b0:t) : (t,t)
    returns { (h,l) -> l + radix * h
                       = mod ((a0 + radix * a1) - (b0 + radix * b1))
                             (radix * radix) }

  (* sub_ddmmss with no underflow *)
  val sub_double_nb (a1 a0 b1 b0:t) : (t,t)
    requires { 0 <= ((a0 + radix * a1) - (b0 + radix * b1)) }
    returns { (h,l) -> l + radix * h = ((a0 + radix * a1) - (b0 + radix * b1)) }

  (* sub_ddmmss with ghost borrow *)
  val sub_double_gb (a1 a0 b1 b0:t) : (ghost t,t,t)
    returns { (b,h,l) -> l + radix * h - radix*radix*b
                         = ((a0 + radix * a1) - (b0 + radix * b1))
                      /\ 0 <= b <= 1 }

  val add3 (x y z:t) : (t,t)
    returns { (r,d) ->
      to_int r + radix * to_int d =
      to_int x + to_int y + to_int z
      /\ 0 <= to_int d <= 2 }

  val mul_mod (x y:t) : t
    ensures { to_int result = mod (to_int x * to_int y) radix }

  val mul_double (x y:t) : (t,t) (* umul_ppmm *)
    returns { (r,d) ->
      to_int r + radix * to_int d =
      to_int x * to_int y }

end

module Int31

  use int.Int

  type int31 = < range -0x4000_0000 0x3fff_ffff >

  let constant min_int31 : int = - 0x4000_0000
  let constant max_int31 : int =   0x3fff_ffff
  function to_int (x : int31) : int = int31'int x

  clone export Bounded_int with
    type t = int31,
    constant min = int31'minInt,
    constant max = int31'maxInt,
    function to_int = int31'int,
    lemma to_int_in_bounds,
    lemma extensionality

(*  use bv.BV31 as BV31

  val to_bv (x: int31) : BV31.t
    ensures { BV31.to_int result = to_int x }
  val of_bv (x: BV31.t) : int31
    ensures { to_int result = BV31.to_int x }
*)
end

module Int32

  use int.Int

  type int32 = < range -0x8000_0000 0x7fff_ffff >

  let constant min_int32 : int = - 0x8000_0000
  let constant max_int32 : int =   0x7fff_ffff
  function to_int (x : int32) : int = int32'int x

  clone export Bounded_int with
    type t = int32,
    constant min = int32'minInt,
    constant max = int32'maxInt,
    function to_int = int32'int,
    lemma to_int_in_bounds,
    lemma extensionality

(*
  use bv.BV32 as BV32

  val to_bv (x: int32) : BV32.t
    ensures { BV32.to_int result = to_int x }
  val of_bv (x: BV32.t) : int32
    ensures { to_int result = BV32.to_int x }
*)
end

module Int32BV

  use export Int32

  use bv.BV32 as BV32

  val to_bv (x: int32) : BV32.t
    ensures { BV32.to_int result = to_int x }
  val of_bv (x: BV32.t) : int32
    ensures { to_int result = BV32.to_int x }

end

module UInt32Gen

  use int.Int

  type uint32 = < range 0 0xffff_ffff >

  let constant max_uint32 : int = 0xffff_ffff
  let constant length : int = 32
  let constant radix : int = max_uint32 + 1
  function to_int (x : uint32) : int = uint32'int x

end

module UInt32

  use export UInt32Gen

  clone export Unsigned with
    type t = uint32,
    constant max = uint32'maxInt,
    constant radix = radix,
    goal radix_def,
    function to_int = uint32'int,
    lemma zero_unsigned_is_zero,
    lemma to_int_in_bounds,
    lemma extensionality

end

module UInt32GMP

  use int.Int
  use int.EuclideanDivision
  use int.Power
  use Int32
  use export UInt32Gen

  clone export UnsignedGMP with
    type t = uint32,
    constant max = uint32'maxInt,
    constant radix = radix,
    goal radix_def,
    function to_int = uint32'int,
    lemma zero_unsigned_is_zero,
    lemma to_int_in_bounds,
    lemma extensionality

  val lsld (x cnt:uint32) : (uint32,uint32)
    requires { 0 < to_int cnt < 32 }
    returns { (r,d) -> to_int r + (max_uint32+1) * to_int d =
              (power 2 (to_int cnt)) * to_int x }

  val lsl (x cnt:uint32) : uint32
    requires { 0 <= to_int cnt < 32 }
    requires { (power 2 (to_int cnt)) * to_int x <= max_uint32 }
    ensures { to_int result = (power 2 (to_int cnt)) * to_int x }

  val lsr (x cnt:uint32) : uint32
    requires { 0 <= to_int cnt < 32 }
    requires { mod (to_int x) (power 2 (to_int cnt)) = 0 }
    ensures { to_int x = (power 2 (to_int cnt)) * to_int result }

  val div2by1 (l h d:uint32) : uint32
    requires { to_int h < to_int d }
    (* this pre implies d > 0 and also
       l + (max+1)*h < (max+1)+(max+1)*h
                     = (max+1)*(h+1)
       thus
       (l + (max+1)*h)/d < (max+1)*(h+1)/d
                         <= max+1   (since h < d)
       thus the result is <= max, no overflow
    *)
    ensures { to_int result
            = div (to_int l + (max_uint32+1) * to_int h) (to_int d) }

  val predicate is_msb_set (x:uint32) : bool
    ensures { result <-> 2 * to_int x > max_uint32 }

  val count_leading_zeros (x:uint32) : int32
    requires { to_int x > 0 }
    ensures { (power 2 (Int32.to_int result)) * to_int x <= max_uint32 }
    ensures { 2 * (power 2 (Int32.to_int result)) * to_int x > max_uint32 }
    ensures { 0 <= Int32.to_int result < 32 }

  val of_int32(x:int32) : uint32
    requires { Int32.to_int x >= 0 }
    ensures { to_int result = Int32.to_int x }

(*  use bv.BV32 as BV32

  val to_bv (x: uint32) : BV32.t
    ensures { BV32.to_uint result = to_int x }
  val of_bv (x: BV32.t) : uint32
    ensures { to_int result = BV32.to_uint x }
*)
end

module Int63

  use int.Int

  type int63 = < range -0x4000_0000_0000_0000 0x3fff_ffff_ffff_ffff >

  let constant min_int63 : int = - 0x4000_0000_0000_0000
  let constant max_int63 : int =   0x3fff_ffff_ffff_ffff
  function to_int (x : int63) : int = int63'int x

  clone export Bounded_int with
    type t = int63,
    constant min = int63'minInt,
    constant max = int63'maxInt,
    function to_int = int63'int,
    lemma to_int_in_bounds,
    lemma extensionality

  let constant zero = of_int 0
  let constant one = of_int 1
  let constant max_int = of_int max_int63
  let constant min_int = of_int min_int63

(*  use bv.BV63 as BV63

  val to_bv (x: int63) : BV63.t
    ensures { BV63.to_int result = to_int x }
  val of_bv (x: BV63.t) : int63
    ensures { to_int result = BV63.to_int x }
*)
end

module Refint63

  use int.Int
  use Int63
  use export ref.Ref

  let incr (r: ref int63) : unit
    requires { [@expl:integer overflow] to_int !r < max_int63 }
    ensures  { to_int !r = to_int (old !r) + 1 }
  = r := !r + of_int 1
  let decr (r: ref int63) : unit
    requires { [@expl:integer overflow] min_int63 < to_int !r }
    ensures  { to_int !r = to_int (old !r) - 1 }
  = r := !r - of_int 1

  let (+=) (r: ref int63) (v: int63) : unit
    requires { [@expl:integer overflow] in_bounds (to_int !r + to_int v) }
    ensures { to_int !r = to_int (old !r) + to_int v }
  = r := !r + v

  let (-=) (r: ref int63) (v: int63) : unit
    requires { [@expl:integer overflow] in_bounds (to_int !r - to_int v) }
    ensures  { to_int !r = to_int (old !r) - to_int v }
  = r := !r - v

  let ( *= ) (r: ref int63) (v: int63) : unit
    requires { [@expl:integer overflow] in_bounds (to_int !r * to_int v) }
    ensures { to_int !r = to_int (old !r) * to_int v }
  = r := !r * v

end

module MinMax63

  use int.Int
  use Int63

  let min (x y: int63) : int63
    ensures { result = if to_int x <= to_int y then x else y }
  = if x <= y then x else y

  let max (x y: int63) : int63
    ensures { result = if to_int x >= to_int y then x else y }
  = if x >= y then x else y

end

Mutable states of pseudo-random generators

Basically a reference containing a pure generator.

module State63

  use int.Int
  use Int63

  type state = private mutable { }

  val create (seed: int63) : state

  val init (s: state) (seed: int63) : unit writes {s}

  val self_init (s: state) : unit writes {s}

  val random_bool (s: state) : bool writes {s}

  val random_int63 (s: state) (n: int63) : int63 writes {s}
    requires { 0 < n }
    ensures  { 0 <= result < n }

end

A global pseudo-random generator

module Random63

  use int.Int
  use Int63
  use State63

  val s: state

  let init (seed: int63) = init s seed

  let self_init () = self_init s

  let random_bool ()
    writes { s }
  = random_bool s

  let random_int63 (n: int63) : int63
    requires { 0 < n } (* FIXME: n should be less than 2^30 *)
    writes   { s }
    ensures  { 0 <= result < n }
  = random_int63 s n

end

module Int64

  use int.Int

  type int64 = < range -0x8000_0000_0000_0000 0x7fff_ffff_ffff_ffff >

  let constant min_int64 : int = - 0x8000_0000_0000_0000
  let constant max_int64 : int =   0x7fff_ffff_ffff_ffff
  function to_int (x : int64) : int = int64'int x

  clone export Bounded_int with
    type t = int64,
    constant min = int64'minInt,
    constant max = int64'maxInt,
    function to_int = int64'int,
    lemma to_int_in_bounds,
    lemma extensionality

(*  use bv.BV64 as BV64

  val to_bv (x: int64) : BV64.t
    ensures { BV64.to_int result = to_int x }
  val of_bv (x: BV64.t) : int64
    ensures { to_int result = BV64.to_int x }
*)
end

module UInt64Gen

  use int.Int

  type uint64 = < range 0 0xffff_ffff_ffff_ffff >

  let constant max_uint64 : int = 0xffff_ffff_ffff_ffff
  let constant length : int = 64
  let constant radix : int = max_uint64 + 1

  function to_int (x : uint64) : int = uint64'int x

end

module UInt64

  use export UInt64Gen

  clone export Unsigned with
    type t = uint64,
    constant max = uint64'maxInt,
    constant radix = radix,
    goal radix_def,
    function to_int = uint64'int,
    lemma zero_unsigned_is_zero,
    lemma to_int_in_bounds,
    lemma extensionality

(*  use bv.BV64 as BV64

  val to_bv (x: uint64) : BV64.t
    ensures { BV64.to_uint result = to_int x }
  val of_bv (x: BV64.t) : uint64
    ensures { to_int result = BV64.to_uint x }
*)
end

module UInt64GMP

  use int.Int
  use int.EuclideanDivision
  use int.Power
  use Int32
  use Int64
  use export UInt64Gen

  clone export UnsignedGMP with
    type t = uint64,
    constant max = uint64'maxInt,
    constant radix = radix,
    goal radix_def,
    function to_int = uint64'int,
    lemma zero_unsigned_is_zero,
    lemma to_int_in_bounds,
    lemma extensionality

  val lsld (x cnt:uint64) : (uint64,uint64)
    requires { 0 < to_int cnt < 64 }
    returns { (r,d) -> to_int r + (max_uint64+1) * to_int d =
              (power 2 (to_int cnt)) * to_int x }

  val lsl (x cnt:uint64) : uint64
    requires { 0 <= to_int cnt < 64 }
    requires { (power 2 (to_int cnt)) * to_int x <= max_uint64 }
    ensures { to_int result = (power 2 (to_int cnt)) * to_int x }

  val lsr (x cnt:uint64) : uint64
    requires { 0 <= to_int cnt < 64 }
    requires { mod (to_int x) (power 2 (to_int cnt)) = 0 }
    ensures { to_int x = (power 2 (to_int cnt)) * to_int result }

  val div2by1 (l h d:uint64) : uint64
    requires { to_int h < to_int d }
    (* this pre implies d > 0 and also
       l + (max+1)*h < (max+1)+(max+1)*h
                     = (max+1)*(h+1)
       thus
       (l + (max+1)*h)/d < (max+1)*(h+1)/d
                         <= max+1   (since h < d)
       thus the result is <= max, no overflow
    *)
    ensures { to_int result
            = div (to_int l + (max_uint64+1) * to_int h) (to_int d) }

  val predicate is_msb_set (x:uint64) : bool
    ensures { result <-> 2 * to_int x > max_uint64 }

  val count_leading_zeros (x:uint64) : int32
    requires { to_int x > 0 }
    ensures { (power 2 (Int32.to_int result)) * to_int x <= max_uint64 }
    ensures { 2 * (power 2 (Int32.to_int result)) * to_int x > max_uint64 }
    ensures { 0 <= Int32.to_int result < 64 }

  val of_int32(x:int32) : uint64
    requires { Int32.to_int x >= 0 }
    ensures { to_int result = Int32.to_int x }

  val to_int64(x:uint64) : int64
    requires { x <= max_int64 }
    ensures  { Int64.to_int result = x }

  val of_int64(x:int64) : uint64
    requires { 0 <= x }
    ensures  { to_int result = x }

end

Generated by why3doc 1.1.0