Why3 Standard Library index


Relations

Relations and orders

module EndoRelation
  type t
  predicate rel t t
end

module Reflexive
  clone export EndoRelation
  axiom Refl : forall x:t. rel x x
end

module Irreflexive
  clone export EndoRelation
  axiom Strict : forall x:t. not rel x x
end

module Transitive
  clone export EndoRelation
  axiom Trans : forall x y z:t. rel x y -> rel y z -> rel x z
end

module Symmetric
  clone export EndoRelation
  axiom Symm : forall x y:t. rel x y -> rel y x
end

module Asymmetric
  clone export EndoRelation
  axiom Asymm : forall x y:t. rel x y -> not rel y x
end

module Antisymmetric
  clone export EndoRelation
  axiom Antisymm : forall x y:t. rel x y -> rel y x -> x = y
end

module Total
  clone export EndoRelation
  axiom Total : forall x y:t. rel x y \/ rel y x
end

module PreOrder
  clone export Reflexive with axiom Refl
  clone export Transitive with type t = t, predicate rel = rel, axiom Trans
end

module Equivalence
  clone export PreOrder with axiom Refl, axiom Trans
  clone export Symmetric with type t = t, predicate rel = rel, axiom Symm
end

module TotalPreOrder
  clone export PreOrder with axiom Refl, axiom Trans
  clone export Total with type t = t, predicate rel = rel, axiom Total
end

module PartialOrder
  clone export PreOrder with axiom Refl, axiom Trans
  clone export Antisymmetric with
    type t = t, predicate rel = rel, axiom Antisymm
end

module TotalOrder
  clone export PartialOrder with axiom .
  clone export Total with type t = t, predicate rel = rel, axiom Total
end

module PartialStrictOrder
  clone export Transitive with axiom Trans
  clone export Asymmetric with type t = t, predicate rel = rel, axiom Asymm
end

module TotalStrictOrder
  clone export PartialStrictOrder with axiom Trans, axiom Asymm
  axiom Trichotomy : forall x y:t. rel x y \/ rel y x \/ x = y
end

module Inverse
  clone export EndoRelation

  predicate inv_rel (x y : t) = rel y x
end

Closures

module ReflClosure
  clone export EndoRelation

  inductive relR t t =
  | BaseRefl : forall x:t. relR x x
  | StepRefl : forall x y:t. rel x y -> relR x y
end

module TransClosure
  clone export EndoRelation

  inductive relT t t =
  | BaseTrans : forall x y:t. rel x y -> relT x y
  | StepTrans : forall x y z:t. relT x y -> rel y z -> relT x z

  lemma relT_transitive:
    forall x y z: t. relT x y -> relT y z -> relT x z
end

module ReflTransClosure
  clone export EndoRelation

  inductive relTR t t =
  | BaseTransRefl : forall x:t. relTR x x
  | StepTransRefl : forall x y z:t. relTR x y -> rel y z -> relTR x z

  lemma relTR_transitive:
    forall x y z: t. relTR x y -> relTR y z -> relTR x z
end

Lexicographic ordering

module Lex

  type t1
  type t2

  predicate rel1 t1 t1
  predicate rel2 t2 t2

  inductive lex (t1, t2) (t1, t2) =
  | Lex_1: forall x1 x2 : t1, y1 y2 : t2.
       rel1 x1 x2 -> lex (x1,y1) (x2,y2)
  | Lex_2: forall x : t1, y1 y2 : t2.
       rel2 y1 y2 -> lex (x,y1) (x,y2)

end

Minimum and maximum for total orders

module MinMax

  type t
  predicate le t t

  clone TotalOrder as TO with type t = t, predicate rel = le, axiom .

  function min (x y : t) : t = if le x y then x else y
  function max (x y : t) : t = if le x y then y else x

  lemma Min_r : forall x y:t. le y x -> min x y = y
  lemma Max_l : forall x y:t. le y x -> max x y = x

  lemma Min_comm : forall x y:t. min x y = min y x
  lemma Max_comm : forall x y:t. max x y = max y x

  lemma Min_assoc : forall x y z:t. min (min x y) z = min x (min y z)
  lemma Max_assoc : forall x y z:t. max (max x y) z = max x (max y z)

end

Well-founded relation

module WellFounded

  inductive acc (r: 'a -> 'a -> bool) (x: 'a) =
  | acc_x: forall r, x: 'a. (forall y. r y x -> acc r y) -> acc r x

  predicate well_founded (r: 'a -> 'a -> bool) =
    forall x. acc r x

end


Generated by why3doc 1.0.0