Why3 Standard Library index


Polymorphic n-ary trees

Basic theory with polymorphic lists of children

module Tree

  use list.List

  type forest 'a = list (tree 'a)
  with tree 'a   = Node 'a (forest 'a)

end

Tree size

module Size

  use Tree
  use list.List
  use int.Int

  let rec function size_forest (f: forest 'a) : int
    ensures { result >= 0 }
  = match f with
    | Nil      -> 0
    | Cons t f -> size_tree t + size_forest f
    end
  with function size_tree (t: tree 'a) : int
    ensures { result > 0 }
  = match t with
    | Node _ f -> 1 + size_forest f
    end

end

Forests

module Forest

  use int.Int

  type forest 'a =
    | E
    | N 'a (forest 'a) (forest 'a)

end

Forest size

module SizeForest

  use Forest
  use int.Int

  let rec function size_forest (f: forest 'a) : int
    ensures { result >= 0 }
  = match f with
    | E -> 0
    | N _ f1 f2 -> 1 + size_forest f1 + size_forest f2
    end

end

Membership in a forest

module MemForest

  use Forest

  predicate mem_forest (n: 'a) (f: forest 'a) = match f with
    | E -> false
    | N i f1 f2 -> i = n || mem_forest n f1 || mem_forest n f2
    end

end

Generated by why3doc 1.4.0