Why3 Standard Library index
module Fmap use int.Int use map.Map use set.Fset as S type fmap 'k 'v = abstract { contents: 'k -> 'v; domain: S.fset 'k; } meta coercion function contents predicate (==) (m1 m2: fmap 'k 'v) = S.(==) m1.domain m2.domain /\ forall k. S.mem k m1.domain -> m1[k] = m2[k] axiom extensionality: forall m1 m2: fmap 'k 'v. m1 == m2 -> m1 = m2 predicate mem (k: 'k) (m: fmap 'k 'v) = S.mem k m.domain predicate mapsto (k: 'k) (v: 'v) (m: fmap 'k 'v) = mem k m /\ m[k] = v lemma mem_mapsto: forall k: 'k, m: fmap 'k 'v. mem k m -> mapsto k m[k] m predicate is_empty (m: fmap 'k 'v) = S.is_empty m.domain function mk (d: S.fset 'k) (m: 'k -> 'v) : fmap 'k 'v axiom mk_domain: forall d: S.fset 'k, m: 'k -> 'v. domain (mk d m) = d axiom mk_contents: forall d: S.fset 'k, m: 'k -> 'v, k: 'k. S.mem k d -> (mk d m)[k] = m[k] constant empty: fmap 'k 'v axiom is_empty_empty: is_empty (empty: fmap 'k 'v) function add (k: 'k) (v: 'v) (m: fmap 'k 'v) : fmap 'k 'v function ([<-]) (m: fmap 'k 'v) (k: 'k) (v: 'v) : fmap 'k 'v = add k v m (*FIXME? (add k v m).contents = m.contents[k <- v] *) axiom add_contents_k: forall k v, m: fmap 'k 'v. (add k v m)[k] = v axiom add_contents_other: forall k v, m: fmap 'k 'v, k1. mem k1 m -> k1 <> k -> (add k v m)[k1] = m[k1] axiom add_domain: forall k v, m: fmap 'k 'v. (add k v m).domain = S.add k m.domain (* FIXME? find_opt (k: 'k) (m: fmap 'k 'v) : option 'v *) function find (k: 'k) (m: fmap 'k 'v) : 'v axiom find_def: forall k, m: fmap 'k 'v. mem k m -> find k m = m[k] function remove (k: 'k) (m: fmap 'k 'v) : fmap 'k 'v axiom remove_contents: forall k, m: fmap 'k 'v, k1. mem k1 m -> k1 <> k -> (remove k m)[k1] = m[k1] axiom remove_domain: forall k, m: fmap 'k 'v. (remove k m).domain = S.remove k m.domain function size (m: fmap 'k 'v) : int = S.cardinal m.domain end
A program function eq
deciding equality on the key
type must be provided when cloned.
module MapApp use int.Int use map.Map use export Fmap type key (* we enforce type `key` to have a decidable equality by requiring the following function *) val eq (x y: key) : bool ensures { result <-> x = y } type t 'v = abstract { to_fmap: fmap key 'v; } meta coercion function to_fmap val create () : t 'v ensures { result.to_fmap = empty } val mem (k: key) (m: t 'v) : bool ensures { result <-> mem k m } val is_empty (m: t 'v) : bool ensures { result <-> is_empty m } val add (k: key) (v: 'v) (m: t 'v) : t 'v ensures { result = add k v m } val find (k: key) (m: t 'v) : 'v requires { mem k m } ensures { result = m[k] } ensures { result = find k m } use ocaml.Exceptions val find_exn (k: key) (m: t 'v) : 'v ensures { S.mem k m.domain } ensures { result = m[k] } raises { Not_found -> not (S.mem k m.domain) } val remove (k: key) (m: t 'v) : t 'v ensures { result = remove k m } val size (m: t 'v) : int ensures { result = size m } end
module MapAppInt use int.Int clone export MapApp with type key = int, val eq = Int.(=), axiom . end
module MapImp use int.Int use map.Map use export Fmap type key val eq (x y: key) : bool ensures { result <-> x = y } type t 'v = abstract { mutable to_fmap: fmap key 'v; } meta coercion function to_fmap val create () : t 'v ensures { result.to_fmap = empty } val mem (k: key) (m: t 'v) : bool ensures { result <-> mem k m } val is_empty (m: t 'v) : bool ensures { result <-> is_empty m } val add (k: key) (v: 'v) (m: t 'v) : unit writes { m } ensures { m = add k v (old m) } val find (k: key) (m: t 'v) : 'v requires { mem k m } ensures { result = m[k] } ensures { result = find k m } use ocaml.Exceptions val find_exn (k: key) (m: t 'v) : 'v ensures { S.mem k m.domain } ensures { result = m[k] } raises { Not_found -> not (S.mem k m.domain) } val remove (k: key) (m: t 'v) : unit writes { m } ensures { m = remove k (old m) } val size (m: t 'v) : int ensures { result = size m } val clear (m: t 'v) : unit writes { m } ensures { m = empty } end
module MapImpInt use int.Int clone export MapImp with type key = int, val eq = Int.(=), axiom . end
Generated by why3doc 1.6.0