Why3 Standard Library index


Sequences

This file provides a basic theory of sequences.

Sequences and basic operations

module Seq

  use int.Int

  type seq 'a

the polymorphic type of sequences

  meta "infinite_type" type seq

seq 'a is an infinite type

  val function length (seq 'a) : int

  axiom length_nonnegative:
    forall s: seq 'a. 0 <= length s

  val function get (seq 'a) int : 'a
    (* FIXME requires { 0 <= i < length s } *)

get s i is the i+1-th element of sequence s (the first element has index 0)

  let function ([]) (s: seq 'a) (i: int) : 'a =
    get s i

  val predicate (==) (s1 s2: seq 'a)
    ensures { result <-> length s1 = length s2 &&
              forall i: int. 0 <= i < length s1 -> s1[i] = s2[i] }
    ensures { result -> s1 = s2 }

equality is extensional

  val function create (len: int) (f: int -> 'a) : seq 'a
    requires { 0 <= len }
    ensures { length result = len }
    ensures { forall i. 0 <= i < len -> result[i] = f i }

sequence comprehension

  val constant empty : seq 'a
    ensures { length result = 0 }

empty sequence

  let function set (s:seq 'a) (i:int) (v:'a) : seq 'a
    requires { 0 <= i < length s }
    ensures { length result = length s }
    ensures { result[i] = v }
    ensures { forall j. 0 <= j < length s /\ j <> i -> result[j] = s[j] }
  = while false do variant { 0 } () done;
    create s.length (fun j -> if j = i then v else s[j])

set s i v is a new sequence u such that u[i] = v and u[j] = s[j] otherwise

  (* FIXME: not a real alias because of spec, but should be. *)
  let function ([<-]) (s: seq 'a) (i: int) (v: 'a) : seq 'a
    requires { 0 <= i < length s }
   = set s i v

  let function singleton (v:'a) : seq 'a
    ensures { length result = 1 }
    ensures { result[0] = v }
  = while false do variant { 0 } () done;
    create 1 (fun _ -> v)

singleton sequence

  let function cons (x:'a) (s:seq 'a) : seq 'a
    ensures { length result = 1 + length s }
    ensures { result[0] = x }
    ensures { forall i. 0 < i <= length s -> result[i] = s[i-1] }
  = while false do variant { 0 } () done;
    create (1 + length s) (fun i -> if i = 0 then x else s[i-1])

insertion of elements on both sides

  let function snoc (s:seq 'a) (x:'a) : seq 'a
    ensures { length result = 1 + length s }
    ensures { result[length s] = x }
    ensures { forall i. 0 <= i < length s -> result[i] = s[i] }
  = while false do variant { 0 } () done;
    create (1 + length s) (fun i -> if i = length s then x else s[i])

  let function ([..]) (s:seq 'a) (i:int) (j:int) : seq 'a
    requires { 0 <= i <= j <= length s }
    ensures { length result = j - i }
    ensures { forall k. 0 <= k < j - i -> result[k] = s[i + k] }
  = while false do variant { 0 } () done;
    create (j-i) (fun k -> s[i+k])

s[i..j] is the sub-sequence of s from element i included to element j excluded

  (* FIXME: spec/alias *)
  let function ([_..]) (s: seq 'a) (i: int) : seq 'a
    requires { 0 <= i <= length s }
  = s[i .. length s]

  (* FIXME: spec/alias *)
  let function ([.._]) (s: seq 'a) (j: int) : seq 'a
    requires { 0 <= j <= length s }
  = s[0 .. j]

  let function (++) (s1:seq 'a) (s2:seq 'a) : seq 'a
    ensures { length result = length s1 + length s2 }
    ensures { forall i. 0 <= i < length s1 -> result[i] = s1[i] }
    ensures { forall i. length s1 <= i < length result ->
      result[i] = s2[i - length s1] }
  = while false do variant { 0 } () done;
    let l = length s1 in
    create (l + length s2)
           (fun i -> if i < l then s1[i] else s2[i-l])

concatenation

end

Lemma library about algebraic interactions between empty/singleton/cons/snoc/++/[ .. ]

module FreeMonoid

  use int.Int
  use Seq

  (* Monoidal properties/simplification. *)

  let lemma associative (s1 s2 s3:seq 'a)
    ensures { s1 ++ (s2 ++ s3) = (s1 ++ s2) ++ s3 }
  = if not (s1 ++ s2) ++ s3 == s1 ++ (s2 ++ s3) then absurd
  meta rewrite axiom associative

  let lemma left_neutral (s:seq 'a)
    ensures { empty ++ s = s }
  = if not empty ++ s == s then absurd
  meta rewrite axiom left_neutral

  let lemma right_neutral (s:seq 'a)
    ensures { s ++ empty = s }
  = if not s ++ empty == s then absurd
  meta rewrite axiom right_neutral

  let lemma cons_def (x:'a) (s:seq 'a)
    ensures { cons x s = singleton x ++ s }
  = if not cons x s == singleton x ++ s then absurd
  meta rewrite axiom cons_def

  let lemma snoc_def (s:seq 'a) (x:'a)
    ensures { snoc s x = s ++ singleton x }
  = if not snoc s x == s ++ singleton x then absurd
  meta rewrite axiom snoc_def

  let lemma double_sub_sequence (s:seq 'a) (i j k l:int)
    requires { 0 <= i <= j <= length s }
    requires { 0 <= k <= l <= j - i }
    ensures { s[i .. j][k .. l] = s[k+i .. l+i] }
  = if not s[i .. j][k .. l] == s[k+i .. l+i] then absurd

  (* Inverting cons/snoc/catenation *)

  let lemma cons_back (x:'a) (s:seq 'a)
    ensures { (cons x s)[1 ..] = s }
  = if not (cons x s)[1 ..] == s then absurd

  let lemma snoc_back (s:seq 'a) (x:'a)
    ensures { (snoc s x)[.. length s] = s }
  = if not (snoc s x)[.. length s] == s then absurd

  let lemma cat_back (s1 s2:seq 'a)
    ensures { (s1 ++ s2)[.. length s1] = s1 }
    ensures { (s1 ++ s2)[length s1 ..] = s2 }
  = let c = s1 ++ s2 in let l = length s1 in
    if not (c[.. l] == s1 || c[l ..] == s2) then absurd

  (* Decomposing sequences as cons/snoc/catenation/empty/singleton *)

  let lemma cons_dec (s:seq 'a)
    requires { length s >= 1 }
    ensures  { s = cons s[0] s[1 ..] }
  = if not s == cons s[0] s[1 ..] then absurd

  let lemma snoc_dec (s:seq 'a)
    requires { length s >= 1 }
    ensures  { s = snoc s[.. length s - 1] s[length s - 1] }
  = if not s == snoc s[.. length s - 1] s[length s - 1] then absurd

  let lemma cat_dec (s:seq 'a) (i:int)
    requires { 0 <= i <= length s }
    ensures  { s = s[.. i] ++ s[i ..] }
  = if not s == s[.. i] ++ s[i ..] then absurd

  let lemma empty_dec (s:seq 'a)
    requires { length s = 0 }
    ensures  { s = empty }
  = if not s == empty then absurd

  let lemma singleton_dec (s:seq 'a)
    requires { length s = 1 }
    ensures  { s = singleton s[0] }
  = if not s == singleton s[0] then absurd

end

module ToList
  use int.Int
  use Seq
  use list.List

  val function to_list (a: seq 'a) : list 'a

  axiom to_list_empty:
    to_list (empty: seq 'a) = (Nil: list 'a)

  axiom to_list_cons:
    forall s: seq 'a. 0 < length s ->
    to_list s = Cons s[0] (to_list s[1 ..])

  use list.Length as ListLength

  lemma to_list_length:
    forall s: seq 'a. ListLength.length (to_list s) = length s

  use list.Nth as ListNth
  use option.Option

  lemma to_list_nth:
    forall s: seq 'a, i: int. 0 <= i < length s ->
    ListNth.nth i (to_list s) = Some s[i]

  let rec lemma to_list_def_cons (s: seq 'a) (x: 'a)
    variant { length s }
    ensures { to_list (cons x s) = Cons x (to_list s) }
  = assert { (cons x s)[1 ..] == s }

end

module OfList
  use int.Int
  use option.Option
  use list.List
  use list.Length as L
  use list.Nth
  use Seq
  use list.Append

  let rec function of_list (l: list 'a) : seq 'a = match l with
    | Nil -> empty
    | Cons x r -> cons x (of_list r)
    end

  lemma length_of_list:
    forall l: list 'a. length (of_list l) = L.length l

  predicate point_wise (s: seq 'a) (l: list 'a) =
    forall i. 0 <= i < L.length l -> Some (get s i) = nth i l

  lemma elts_seq_of_list: forall l: list 'a.
    point_wise (of_list l) l

  lemma is_of_list: forall l: list 'a, s: seq 'a.
    L.length l = length s -> point_wise s l -> s == of_list l

  let rec lemma of_list_app (l1 l2: list 'a)
    ensures { of_list (l1 ++ l2) == Seq.(++) (of_list l1) (of_list l2) }
    variant { l1 }
  = match l1 with
    | Nil -> ()
    | Cons _ r -> of_list_app r l2
    end

  lemma of_list_app_length: forall l1 [@induction] l2: list 'a.
    length (of_list (l1 ++ l2)) = L.length l1 + L.length l2

  let rec lemma of_list_snoc (l: list 'a) (x: 'a)
    variant { l }
    ensures { of_list (l ++ Cons x Nil) == snoc (of_list l) x }
  = match l with
    | Nil -> assert { snoc empty x = cons x empty }
    | Cons _ r -> of_list_snoc r x;
    end

  meta coercion function of_list

  use ToList

  lemma convolution_to_of_list: forall l: list 'a.
    to_list (of_list l) = l

end

module Mem

  use int.Int
  use Seq

  predicate mem (x: 'a) (s: seq 'a) =
    exists i: int. 0 <= i < length s && s[i] = x

  lemma mem_append : forall x: 'a, s1 s2.
    mem x (s1 ++ s2) <-> mem x s1 \/ mem x s2

  lemma mem_tail: forall x: 'a, s.
    length s > 0 ->
    mem x s <-> (x = s[0] \/ mem x s[1 .. ])

end

module Distinct
  use int.Int
  use Seq

  predicate distinct (s : seq 'a) =
    forall i j. 0 <= i < length s -> 0 <= j < length s ->
    i <> j -> s[i] <> s[j]

end

module Reverse

  use int.Int
  use Seq

  let function reverse (s: seq 'a) : seq 'a =
    create (length s) (fun i -> s[length s - 1 - i])

end

module ToFset
  use int.Int
  use set.Fset
  use Mem
  use Seq

  val function to_set (s: seq 'a) : fset 'a

  axiom to_set_empty: to_set (empty: seq 'a) = (Fset.empty: fset 'a)

  axiom to_set_add: forall s: seq 'a. length s > 0 ->
    to_set s = add s[0] (to_set s[1 ..])

  lemma to_set_cardinal: forall s: seq 'a.
    cardinal (to_set s) <= length s

  lemma to_set_mem: forall s: seq 'a, e: 'a.
    mem e s <-> Fset.mem e (to_set s)

  lemma to_set_snoc: forall s: seq 'a, x: 'a.
    to_set (snoc s x) = add x (to_set s)

  use Distinct

  lemma to_set_cardinal_distinct: forall s: seq 'a. distinct s ->
    cardinal (to_set s) = length s

end

Sorted Sequences

module Sorted

  use int.Int
  use Seq

  type t
  predicate le t t
  clone relations.TotalPreOrder as TO with
    type t = t, predicate rel = le, axiom .

  predicate sorted_sub (s: seq t) (l u: int) =
    forall i1 i2. l <= i1 <= i2 < u -> le s[i1] s[i2]

sorted_sub s l u is true whenever the sub-sequence s[l .. u-1] is sorted w.r.t. order relation le

  predicate sorted (s: seq t) =
    sorted_sub s 0 (length s)

sorted s is true whenever the sequence s is sorted w.r.t le

  lemma sorted_cons:
    forall x: t, s: seq t.
      (forall i: int. 0 <= i < length s -> le x s[i]) /\ sorted s <->
    sorted (cons x s)

  lemma sorted_append:
    forall s1 s2: seq t.
    (sorted s1 /\ sorted s2 /\
      (forall i j: int. 0 <= i < length s1 /\ 0 <= j < length s2 ->
      le s1[i] s2[j])) <-> sorted (s1 ++ s2)

  lemma sorted_snoc:
    forall x: t, s: seq t.
      (forall i: int. 0 <= i < length s -> le s[i] x) /\ sorted s <->
    sorted (snoc s x)

end

module SortedInt

sorted sequences of integers

  use int.Int
  clone export Sorted with type t = int, predicate le = (<=), goal .

end

module Sum

  use int.Int
  use Seq
  use int.Sum as S

  function sum (s: seq int) : int = S.sum (fun i -> s[i]) 0 (length s)

  lemma sum_snoc:
    forall s x. sum (snoc s x) = sum s + x
  lemma sum_tail:
    forall s. length s >= 1 -> sum s = s[0] + sum s[1 .. ]
  lemma sum_tail_tail:
    forall s. length s >= 2 -> sum s = s[0] + s[1] + sum s[2 .. ]

end

Number of occurrences in a sequence

module Occ

  use int.Int
  use int.NumOf as N
  use Seq

  function iseq (x: 'a) (s: seq 'a) : int->bool = fun i -> s[i] = x

  function occ (x: 'a) (s: seq 'a) (l u: int) : int = N.numof (iseq x s) l u

  function occ_all (x: 'a) (s: seq 'a) : int =
    occ x s 0 (length s)

  lemma occ_cons:
    forall k: 'a, s: seq 'a, x: 'a.
    (occ_all k (cons x s) =
    if k = x then 1 + occ_all k s else occ_all k s
    ) by (cons x s == (cons x empty) ++ s)

  lemma occ_snoc:
    forall k: 'a, s: seq 'a, x: 'a.
    occ_all k (snoc s x) =
    if k = x then 1 + occ_all k s else occ_all k s

  lemma occ_tail:
    forall k: 'a, s: seq 'a.
    length s > 0 ->
    (occ_all k s[1..] =
    if k = s[0] then (occ_all k s) - 1 else occ_all k s
    ) by (s == cons s[0] s[1..])

  lemma append_num_occ:
    forall x: 'a, s1 s2: seq 'a.
    occ_all x (s1 ++ s2) =
    occ_all x s1 + occ_all x s2

end

Sequences Equality

module SeqEq

  use int.Int
  use Seq

  predicate seq_eq_sub (s1 s2: seq 'a) (l u: int) =
    forall i. l <= i < u -> s1[i] = s2[i]

end

module Exchange

  use int.Int
  use Seq

  predicate exchange (s1 s2: seq 'a) (i j: int) =
    length s1 = length s2 /\
    0 <= i < length s1 /\ 0 <= j < length s1 /\
    s1[i] = s2[j] /\ s1[j] = s2[i] /\
    (forall k:int. 0 <= k < length s1 -> k <> i -> k <> j -> s1[k] = s2[k])

  lemma exchange_set :
    forall s: seq 'a, i j: int.
    0 <= i < length s -> 0 <= j < length s ->
    exchange s s[i <- s[j]][j <- s[i]] i j

end

Permutation of sequences

module Permut

  use int.Int
  use Seq
  use Occ
  use SeqEq
  use export Exchange

  predicate permut (s1 s2: seq 'a) (l u: int) =
    length s1 = length s2 /\
    0 <= l <= length s1 /\ 0 <= u <= length s1 /\
    forall v: 'a. occ v s1 l u = occ v s2 l u

permut s1 s2 l u is true when the segment s1[l..u-1] is a permutation of the segment s2[l..u-1]. Values outside this range are ignored.

  predicate permut_sub (s1 s2: seq 'a) (l u: int) =
    seq_eq_sub s1 s2 0 l /\
    permut s1 s2 l u /\
    seq_eq_sub s1 s2 u (length s1)

permut_sub s1 s2 l u is true when the segment s1[l..u-1] is a permutation of the segment s2[l..u-1] and values outside this range are equal.

  predicate permut_all (s1 s2: seq 'a) =
    length s1 = length s2 /\ permut s1 s2 0 (length s1)

permut_all s1 s2 is true when sequence s1 is a permutation of sequence s2

  lemma exchange_permut_sub:
    forall s1 s2: seq 'a, i j l u: int.
    exchange s1 s2 i j -> l <= i < u -> l <= j < u ->
    0 <= l -> u <= length s1 -> permut_sub s1 s2 l u

  lemma Permut_sub_weakening:
    forall s1 s2: seq 'a, l1 u1 l2 u2: int.
    permut_sub s1 s2 l1 u1 -> 0 <= l2 <= l1 -> u1 <= u2 <= length s1 ->
    permut_sub s1 s2 l2 u2

enlarge the interval

Lemmas about permut

  lemma permut_refl: forall s: seq 'a, l u: int.
    0 <= l <= length s -> 0 <= u <= length s ->
    permut s s l u

  lemma permut_sym: forall s1 s2: seq 'a, l u: int.
    permut s1 s2 l u -> permut s2 s1 l u

  lemma permut_trans:
    forall s1 s2 s3: seq 'a, l u: int.
    permut s1 s2 l u -> permut s2 s3 l u -> permut s1 s3 l u

  lemma permut_exists:
    forall s1 s2: seq 'a, l u i: int.
    permut s1 s2 l u -> l <= i < u ->
    exists j: int. l <= j < u /\ s1[j] = s2[i]

Lemmas about permut_all

  use Mem

  lemma permut_all_mem: forall s1 s2: seq 'a. permut_all s1 s2 ->
    forall x. mem x s1 <-> mem x s2

  lemma exchange_permut_all:
    forall s1 s2: seq 'a, i j: int.
    exchange s1 s2 i j -> permut_all s1 s2

end

module FoldLeft

  use Seq
  use int.Int

  let rec function fold_left (f: 'a -> 'b -> 'a) (acc: 'a) (s: seq 'b) : 'a
    variant { length s }
  = if length s = 0 then acc else fold_left f (f acc s[0]) s[1 ..]

fold_left f a [b1; ...; bn] is f (... (f (f a b1) b2) ...) bn

  lemma fold_left_ext: forall f: 'b -> 'a -> 'b, acc: 'b, s1 s2: seq 'a.
    s1 == s2 -> fold_left f acc s1 = fold_left f acc s2

  lemma fold_left_cons: forall s: seq 'a, x: 'a, f: 'b -> 'a -> 'b, acc: 'b.
    fold_left f acc (cons x s) = fold_left f (f acc x) s

  let rec lemma fold_left_app (s1 s2: seq 'a) (f: 'b -> 'a -> 'b) (acc: 'b)
    ensures { fold_left f acc (s1 ++ s2) = fold_left f (fold_left f acc s1) s2 }
    variant { Seq.length s1 }
  = if Seq.length s1 > 0 then fold_left_app s1[1 ..] s2 f (f acc (Seq.get s1 0))

end

module FoldRight

  use Seq
  use int.Int

  let rec function fold_right (f: 'b -> 'a -> 'a) (s: seq 'b) (acc: 'a) : 'a
    variant { length s }
  = if length s = 0 then acc
    else let acc = f s[length s - 1] acc in fold_right f s[.. length s - 1] acc

fold_right f [a1; ...; an] b is f a1 (f a2 (... (f an b) ...))

  lemma fold_right_ext: forall f: 'a -> 'b -> 'b, acc: 'b, s1 s2: seq 'a.
    s1 == s2 -> fold_right f s1 acc = fold_right f s2 acc

  lemma fold_right_snoc: forall s: seq 'a, x: 'a, f: 'a -> 'b -> 'b, acc: 'b.
    fold_right f (snoc s x) acc = fold_right f s (f x acc)

end


Generated by why3doc 1.7.2