Why3 Standard Library index


Set theories

- polymorphic sets to be used in specification/ghost only (no executable functions)

- Set, Cardinal: possibly infinite sets - Fset, FsetInt, FsetInduction, FsetSum: finite sets

- monomorphic finite sets to be used in programs only (no logical functions)

a program function eq deciding equality on the element type must be provided when cloned

- SetApp, SetAppInt: immutable sets - SetImp, SetImpInt: mutable sets

Potentially infinite sets

module Set

  use map.Map
  use map.Const

  type set 'a = map 'a bool

  meta "material_type_arg" type set, 0

if 'a is an infinite type, then set 'a is infinite

  predicate mem (x: 'a) (s: set 'a) = s[x]

membership

  predicate (==) (s1 s2: set 'a) = forall x: 'a. mem x s1 <-> mem x s2

equality

  lemma extensionality:
    forall s1 s2: set 'a. s1 == s2 -> s1 = s2

  predicate subset (s1 s2: set 'a) = forall x : 'a. mem x s1 -> mem x s2

inclusion

  lemma subset_refl:
    forall s: set 'a. subset s s

  lemma subset_trans:
    forall s1 s2 s3: set 'a. subset s1 s2 -> subset s2 s3 -> subset s1 s3

  predicate is_empty (s: set 'a) = forall x: 'a. not (mem x s)

empty set

  let constant empty: set 'a = const false

  lemma is_empty_empty: is_empty (empty: set 'a)

  lemma empty_is_empty:
    forall s: set 'a. is_empty s -> s = empty

  let constant all: set 'a = const true

whole set

  function add (x: 'a) (s: set 'a): set 'a = s[x <- true]

addition

  function singleton (x: 'a): set 'a = add x empty

  lemma mem_singleton:
    forall x, y: 'a. mem y (singleton x) -> y = x

  function remove (x: 'a) (s: set 'a): set 'a = s[x <- false]

removal

  lemma add_remove:
    forall x: 'a, s: set 'a. mem x s -> add x (remove x s) = s

  lemma remove_add:
    forall x: 'a, s: set 'a. remove x (add x s) = remove x s

  lemma subset_remove:
    forall x: 'a, s: set 'a. subset (remove x s) s

  function union (s1 s2: set 'a): set 'a
  = fun x -> mem x s1 \/ mem x s2

union

  lemma subset_union_1:
    forall s1 s2: set 'a. subset s1 (union s1 s2)
  lemma subset_union_2:
    forall s1 s2: set 'a. subset s2 (union s1 s2)

  function inter (s1 s2: set 'a): set 'a
  = fun x -> mem x s1 /\ mem x s2

intersection

  lemma subset_inter_1:
    forall s1 s2: set 'a. subset (inter s1 s2) s1
  lemma subset_inter_2:
    forall s1 s2: set 'a. subset (inter s1 s2) s2

  function diff (s1 s2: set 'a): set 'a
  = fun x -> mem x s1 /\ not (mem x s2)

difference

  lemma subset_diff:
    forall s1 s2: set 'a. subset (diff s1 s2) s1

  function complement (s: set 'a): set 'a
  = fun x -> not (mem x s)

complement

  function pick (s: set 'a): 'a

arbitrary element

  axiom pick_def: forall s: set 'a. not (is_empty s) -> mem (pick s) s

  predicate disjoint (s1 s2: set 'a) =
    forall x. not (mem x s1) \/ not (mem x s2)

disjoint sets

  lemma disjoint_inter_empty:
    forall s1 s2: set 'a. disjoint s1 s2 <-> is_empty (inter s1 s2)

  lemma disjoint_diff_eq:
    forall s1 s2: set 'a. disjoint s1 s2 <-> diff s1 s2 = s1

  lemma disjoint_diff_s2:
    forall s1 s2: set 'a. disjoint (diff s1 s2) s2

  function product (s1: set 'a) (s2: set 'b) : set ('a, 'b)
  axiom product_def:
    forall s1: set 'a, s2: set 'b, x : 'a, y : 'b.
    mem (x, y) (product s1 s2) <-> mem x s1 /\ mem y s2

{ (x, y) | x in s1 /\ y in s2 }

  function filter (s: set 'a) (p: 'a -> bool) : set 'a
  axiom filter_def:
    forall s: set 'a, p: 'a -> bool, x: 'a. mem x (filter s p) <-> mem x s /\ p x

{ x | x in s /\ p x }

  lemma subset_filter:
    forall s: set 'a, p: 'a -> bool. subset (filter s p) s

  function map (f: 'a -> 'b) (u: set 'a) : set 'b =
    fun (y: 'b) -> exists x: 'a. mem x u /\ y = f x

{ f x | x in U }

  lemma mem_map:
    forall f: 'a -> 'b, u: set 'a.
    forall x: 'a. mem x u -> mem (f x) (map f u)

end

module Cardinal

  use Set

  predicate is_finite (s: set 'a)

  axiom is_finite_empty:
    forall s: set 'a. is_empty s -> is_finite s

  axiom is_finite_subset:
    forall s1 s2: set 'a. is_finite s2 -> subset s1 s2 -> is_finite s1

  axiom is_finite_add:
    forall x: 'a, s: set 'a. is_finite s -> is_finite (add x s)
  axiom is_finite_add_rev:
    forall x: 'a, s: set 'a. is_finite (add x s) -> is_finite s

  lemma is_finite_singleton:
    forall x: 'a. is_finite (singleton x)

  axiom is_finite_remove:
    forall x: 'a, s: set 'a. is_finite s -> is_finite (remove x s)
  axiom is_finite_remove_rev:
    forall x: 'a, s: set 'a. is_finite (remove x s) -> is_finite s

  axiom is_finite_union:
    forall s1 s2: set 'a.
    is_finite s1 -> is_finite s2 -> is_finite (union s1 s2)
  axiom is_finite_union_rev:
    forall s1 s2: set 'a.
    is_finite (union s1 s2) -> is_finite s1 /\ is_finite s2

  axiom is_finite_inter_left:
    forall s1 s2: set 'a. is_finite s1 -> is_finite (inter s1 s2)
  axiom is_finite_inter_right:
    forall s1 s2: set 'a. is_finite s2 -> is_finite (inter s1 s2)

  axiom is_finite_diff:
    forall s1 s2: set 'a. is_finite s1 -> is_finite (diff s1 s2)

  lemma is_finite_map:
    forall f: 'a -> 'b, s: set 'a. is_finite s -> is_finite (map f s)

  lemma is_finite_product:
    forall s1: set 'a, s2 : set 'b. is_finite s1 -> is_finite s2 ->
           is_finite (product s1 s2)

cardinal function

  use int.Int

  function cardinal (set 'a): int

  axiom cardinal_nonneg:
    forall s: set 'a. cardinal s >= 0

  axiom cardinal_empty:
    forall s: set 'a. is_finite s -> (is_empty s <-> cardinal s = 0)

  axiom cardinal_add:
    forall x: 'a. forall s: set 'a. is_finite s ->
    if mem x s then cardinal (add x s) = cardinal s
               else cardinal (add x s) = cardinal s + 1

  axiom cardinal_remove:
    forall x: 'a. forall s: set 'a. is_finite s ->
    if mem x s then cardinal (remove x s) = cardinal s - 1
               else cardinal (remove x s) = cardinal s

  axiom cardinal_subset:
    forall s1 s2: set 'a. is_finite s2 ->
    subset s1 s2 -> cardinal s1 <= cardinal s2

  lemma subset_eq:
    forall s1 s2: set 'a. is_finite s2 ->
    subset s1 s2 -> cardinal s1 = cardinal s2 -> s1 = s2

  lemma cardinal1:
    forall s: set 'a. cardinal s = 1 ->
    forall x: 'a. mem x s -> x = pick s

  axiom cardinal_union:
    forall s1 s2: set 'a. is_finite s1 -> is_finite s2 ->
    cardinal (union s1 s2) = cardinal s1 + cardinal s2 - cardinal (inter s1 s2)

  lemma cardinal_inter_disjoint:
    forall s1 s2: set 'a. disjoint s1 s2 -> cardinal (inter s1 s2) = 0

  axiom cardinal_diff:
    forall s1 s2: set 'a. is_finite s1 ->
    cardinal (diff s1 s2) = cardinal s1 - cardinal (inter s1 s2)

  lemma cardinal_map:
    forall f: 'a -> 'b, s: set 'a. is_finite s ->
    cardinal (map f s) <= cardinal s

  lemma cardinal_product:
    forall s1: set 'a, s2 : set 'b. is_finite s1 -> is_finite s2 ->
    cardinal (product s1 s2) = cardinal s1 * cardinal s2
end

Finite sets

module Fset

  type fset 'a

  meta "material_type_arg" type fset, 0

if 'a is an infinite type, then fset 'a is infinite

  predicate mem (x: 'a) (s: fset 'a) (* = s.to_map[x] *)

membership

  predicate (==) (s1 s2: fset 'a) = forall x: 'a. mem x s1 <-> mem x s2

equality

  lemma extensionality:
    forall s1 s2: fset 'a. s1 == s2 -> s1 = s2

  predicate subset (s1 s2: fset 'a) = forall x : 'a. mem x s1 -> mem x s2

inclusion

  lemma subset_refl:
    forall s: fset 'a. subset s s

  lemma subset_trans:
    forall s1 s2 s3: fset 'a. subset s1 s2 -> subset s2 s3 -> subset s1 s3

  predicate is_empty (s: fset 'a) = forall x: 'a. not (mem x s)

empty set

  constant empty: fset 'a
  (* axiom empty_def: (empty: fset 'a).to_map = const false *)

  axiom is_empty_empty: is_empty (empty: fset 'a)

  lemma empty_is_empty:
    forall s: fset 'a. is_empty s -> s = empty

  function add (x: 'a) (s: fset 'a) : fset 'a
  axiom add_def:
    forall x: 'a, s: fset 'a, y: 'a. mem y (add x s) <-> (mem y s \/ y = x)

addition

  function singleton (x: 'a): fset 'a = add x empty

  lemma mem_singleton:
    forall x, y: 'a. mem y (singleton x) -> y = x

  function remove (x: 'a) (s: fset 'a) : fset 'a
  axiom remove_def:
    forall x: 'a, s: fset 'a, y: 'a. mem y (remove x s) <-> (mem y s /\ y <> x)

removal

  lemma add_remove:
    forall x: 'a, s: fset 'a. mem x s -> add x (remove x s) = s

  lemma remove_add:
    forall x: 'a, s: fset 'a. remove x (add x s) = remove x s

  lemma subset_remove:
    forall x: 'a, s: fset 'a. subset (remove x s) s

  function union (s1 s2: fset 'a): fset 'a
  axiom union_def:
    forall s1 s2: fset 'a, x: 'a. mem x (union s1 s2) <-> mem x s1 \/ mem x s2

union

  lemma subset_union_1:
    forall s1 s2: fset 'a. subset s1 (union s1 s2)
  lemma subset_union_2:
    forall s1 s2: fset 'a. subset s2 (union s1 s2)

  function inter (s1 s2: fset 'a): fset 'a
  axiom inter_def:
    forall s1 s2: fset 'a, x: 'a. mem x (inter s1 s2) <-> mem x s1 /\ mem x s2

intersection

  lemma subset_inter_1:
    forall s1 s2: fset 'a. subset (inter s1 s2) s1
  lemma subset_inter_2:
    forall s1 s2: fset 'a. subset (inter s1 s2) s2

  function diff (s1 s2: fset 'a): fset 'a
  axiom diff_def:
    forall s1 s2: fset 'a, x: 'a. mem x (diff s1 s2) <-> mem x s1 /\ not (mem x s2)

difference

  lemma subset_diff:
    forall s1 s2: fset 'a. subset (diff s1 s2) s1

  function pick (s: fset 'a): 'a

arbitrary element

  axiom pick_def: forall s: fset 'a. not (is_empty s) -> mem (pick s) s

  predicate disjoint (s1 s2: fset 'a) =
    forall x. not (mem x s1) \/ not (mem x s2)

disjoint sets

  lemma disjoint_inter_empty:
    forall s1 s2: fset 'a. disjoint s1 s2 <-> is_empty (inter s1 s2)

  lemma disjoint_diff_eq:
    forall s1 s2: fset 'a. disjoint s1 s2 <-> diff s1 s2 = s1

  lemma disjoint_diff_s2:
    forall s1 s2: fset 'a. disjoint (diff s1 s2) s2

  function filter (s: fset 'a) (p: 'a -> bool) : fset 'a
  axiom filter_def:
    forall s: fset 'a, p: 'a -> bool, x: 'a. mem x (filter s p) <-> mem x s /\ p x

{ x | x in s /\ p x }

  lemma subset_filter:
    forall s: fset 'a, p: 'a -> bool. subset (filter s p) s

  function map (f: 'a -> 'b) (u: fset 'a) : fset 'b
  axiom map_def:
    forall f: 'a -> 'b, u: fset 'a, y: 'b.
    mem y (map f u) <-> exists x: 'a. mem x u /\ y = f x

{ f x | x in U }

  lemma mem_map:
    forall f: 'a -> 'b, u: fset 'a.
    forall x: 'a. mem x u -> mem (f x) (map f u)

cardinal

  use int.Int

  function cardinal (fset 'a) : int

  axiom cardinal_nonneg:
    forall s: fset 'a. cardinal s >= 0

  axiom cardinal_empty:
    forall s: fset 'a. is_empty s <-> cardinal s = 0

  axiom cardinal_add:
    forall x: 'a. forall s: fset 'a.
    if mem x s then cardinal (add x s) = cardinal s
               else cardinal (add x s) = cardinal s + 1

  axiom cardinal_remove:
    forall x: 'a. forall s: fset 'a.
    if mem x s then cardinal (remove x s) = cardinal s - 1
               else cardinal (remove x s) = cardinal s

  axiom cardinal_subset:
    forall s1 s2: fset 'a.
    subset s1 s2 -> cardinal s1 <= cardinal s2

  lemma subset_eq:
    forall s1 s2: fset 'a.
    subset s1 s2 -> cardinal s1 = cardinal s2 -> s1 = s2

  lemma cardinal1:
    forall s: fset 'a. cardinal s = 1 ->
    forall x: 'a. mem x s -> x = pick s

  axiom cardinal_union:
    forall s1 s2: fset 'a.
    cardinal (union s1 s2) = cardinal s1 + cardinal s2 - cardinal (inter s1 s2)

  lemma cardinal_inter_disjoint:
    forall s1 s2: fset 'a. disjoint s1 s2 -> cardinal (inter s1 s2) = 0

  axiom cardinal_diff:
    forall s1 s2: fset 'a.
    cardinal (diff s1 s2) = cardinal s1 - cardinal (inter s1 s2)

  lemma cardinal_filter:
    forall s: fset 'a, p: 'a -> bool.
    cardinal (filter s p) <= cardinal s

  lemma cardinal_map:
    forall f: 'a -> 'b, s: fset 'a.
    cardinal (map f s) <= cardinal s

end

Induction principle on finite sets

module FsetInduction

  use Fset

  type t

  predicate p (fset t)

  lemma Induction:
    (forall s: fset t. is_empty s -> p s) ->
    (forall s: fset t. p s -> forall t. p (add t s)) ->
    forall s: fset t. p s

end

Finite sets of integers

module FsetInt

  use int.Int
  use export Fset

  function min_elt (s: fset int) : int

  axiom min_elt_def:
    forall s: fset int. not (is_empty s) ->
    mem (min_elt s) s /\ forall x. mem x s -> min_elt s <= x

  function max_elt (s: fset int) : int

  axiom max_elt_def:
    forall s: fset int. not (is_empty s) ->
    mem (max_elt s) s /\ forall x. mem x s -> x <= max_elt s

  function interval (l r: int) : fset int
  axiom interval_def:
    forall l r x. mem x (interval l r) <-> l <= x < r

  lemma cardinal_interval:
    forall l r. cardinal (interval l r) = if l <= r then r - l else 0

end

Sum of a function over a finite set

module FsetSum

  use int.Int
  use Fset

  function sum (fset 'a) ('a -> int) : int

sum s f is the sum \sum_{mem x s} f x

  axiom sum_def_empty:
    forall s: fset 'a, f. is_empty s -> sum s f = 0

  axiom sum_add:
    forall s: fset 'a, f, x.
    if mem x s then sum (add x s) f = sum s f
               else sum (add x s) f = sum s f + f x

  axiom sum_remove:
    forall s: fset 'a, f, x.
    if mem x s then sum (remove x s) f = sum s f - f x
               else sum (remove x s) f = sum s f

  lemma sum_union:
    forall s1 s2: fset 'a. forall f.
    sum (union s1 s2) f = sum s1 f + sum s2 f - sum (inter s1 s2) f

  lemma sum_eq:
    forall s: fset 'a. forall f g.
    (forall x. mem x s -> f x = g x) -> sum s f = sum s g

  axiom cardinal_is_sum:
    forall s: fset 'a. cardinal s = sum s (fun _ -> 1)

end

Finite Monomorphic sets

To be used in programs.

Applicative sets

module SetApp

  use int.Int
  use export Fset

  type elt

  val eq (x y: elt) : bool
    ensures { result <-> x = y }

  type set = abstract {
    to_fset: fset elt;
  }
  meta coercion function to_fset

  val ghost function mk (s: fset elt) : set
    ensures { result.to_fset = s }

  val mem (x: elt) (s: set) : bool
    ensures { result <-> mem x s }

  val (==) (s1 s2: set) : bool
    ensures { result <-> s1 == s2 }

  val subset (s1 s2: set) : bool
    ensures { result <-> subset s1 s2 }

  val empty () : set
    ensures { result.to_fset = empty }
    ensures { cardinal result = 0 }

  val is_empty (s: set) : bool
    ensures { result <-> is_empty s }

  val add (x: elt) (s: set) : set
    ensures { result = add x s }
    ensures { if mem x s then cardinal result = cardinal s
                         else cardinal result = cardinal s + 1 }

  let singleton (x: elt) : set
    ensures { result = singleton x }
    ensures { cardinal result = 1 }
  = add x (empty ())

  val remove (x: elt) (s: set): set
    ensures { result = remove x s }
    ensures { if mem x s then cardinal result = cardinal s - 1
                         else cardinal result = cardinal s }

  val union (s1 s2: set): set
    ensures { result = union s1 s2 }

  val inter (s1 s2: set) : set
    ensures { result = inter s1 s2 }

  val diff (s1 s2: set) : set
    ensures { result = diff s1 s2 }

  val function choose (s: set) : elt
    requires { not (is_empty s) }
    ensures  { mem result s }

  val disjoint (s1 s2: set) : bool
    ensures { result <-> disjoint s1 s2 }

  val cardinal (s: set) : int (* Peano.t *)
    ensures { result = cardinal s }

end

Applicative sets of integers

module SetAppInt

  use int.Int
  use export FsetInt

  clone export SetApp with type elt = int, val eq = Int.(=), axiom .

  val min_elt (s: set) : int
    requires { not (is_empty s) }
    ensures  { result = min_elt s }

  val max_elt (s: set) : int
    requires { not (is_empty s) }
    ensures  { result = max_elt s }

  val interval (l r: int) : set
    ensures  { result = interval l r }
    ensures  { cardinal result = if l <= r then r - l else 0 }

end

Imperative sets

module SetImp

  use int.Int
  use export Fset

  type elt

  val eq (x y: elt) : bool
    ensures { result <-> x = y }

  type set = abstract {
    mutable to_fset: fset elt;
  }
  meta coercion function to_fset

  val mem (x: elt) (s: set) : bool
    ensures { result <-> mem x s }

  val (==) (s1 s2: set) : bool
    ensures { result <-> s1 == s2 }

  val subset (s1 s2: set) : bool
    ensures { result <-> subset s1 s2 }

  val empty () : set
    ensures { result = empty }
    ensures { cardinal result = 0 }

  val clear (s: set) : unit
    writes  { s }
    ensures { s = empty }

  val is_empty (s: set) : bool
    ensures { result <-> is_empty s }

  val add (x: elt) (s: set) : unit
    writes  { s }
    ensures { s = add x (old s) }
    ensures { if mem x (old s) then cardinal s = cardinal (old s)
                               else cardinal s = cardinal (old s) + 1 }

  let singleton (x: elt) : set
    ensures { result = singleton x }
    ensures { cardinal result = 1 }
  = let s = empty () in
    add x s;
    s

  val remove (x: elt) (s: set) : unit
    writes  { s }
    ensures { s = remove x (old s) }
    ensures { if mem x (old s) then cardinal s = cardinal (old s) - 1
                               else cardinal s = cardinal (old s) }

  val function choose (s: set) : elt
    requires { not (is_empty s) }
    ensures  { mem result s }

  val choose_and_remove (s: set) : elt
    requires { not (is_empty s) }
    writes   { s }
    ensures  { result = choose (old s) }
    ensures  { mem result (old s) }
    ensures  { s = remove result (old s) }

  val disjoint (s1 s2: set) : bool
    ensures { result <-> disjoint s1 s2 }

  val cardinal (s: set) : int (* Peano.t? *)
    ensures { result = cardinal s }

end

Imperative sets of integers

This module is mapped to OCaml's Hashtbl in the OCaml driver.

module SetImpInt

  use int.Int
  use export FsetInt

  clone export SetImp with type elt = int, val eq = Int.(=), axiom .

end

Generated by why3doc 1.7.2